HomePage | RecentChanges | Preferences

Abbreviation: BCK


A BCK-algebra is a structure A = (A,·,0) of type (2,0) such that

(1):   ((x·y)·(x·z))·(z·y)  = 0,
(2):   x·0  = x,
(3):   x  = 0, and
(4):   x·y = y·x = 0   ⇒  x = y.

Remark: x ≤ y   ⇔   x·y = 0 is a partial order, with 0 as least element.

BCK-algebras provide [algebraic semantics]? for BCK-logic, named after the combinators B, C, and K by C. A. Meredith, see [A. N. Prior, Formal logic, Second edition Clarendon Press, Oxford (1962) MRreview], p. 316.


A BCK-algebra is a BCI-algebra A = (A,·,0) such that x·0  = x.



Let A and B be BCK-algebras. A morphism from A to B is a function h : AB that is a homomorphism: h(x·y) = h(xh(y) and h(0) = 0.

Some results



Classtype Quasivariety [Andrzej Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983) 211--213 MRreview]
Equational theory
Quasiequational theory
First-order theory Undecidable
Locally finite No
Residual size Unbounded
Congruence distributive No
Congruence modular No
Congruence n-permutable No
Congruence regular No
Congruence uniform No
Congruence extension property No
Definable principal congruences No
Equationally definable principal congruences No
Amalgamation property Yes
Strong amalgamation property Yes [Andrzej Wronski, Interpolation and amalgamation properties of BCK-algebras, Math. Japon. 29 (1984) 115--121 MRreview]
Epimorphisms are surjective

Finite members

[Size 1]?:  1
[Size 2]?:  
[Size 3]?:  
[Size 4]?:  
[Size 5]?:  
Size 6:  


commutative BCK-algebras



HomePage | RecentChanges | Preferences
This page is read-only | View other revisions
Last edited July 6, 2004 5:10 pm (diff)