Commutative residuated lattices

HomePage | RecentChanges | Preferences

Definition

A commutative residuated lattice is a residuated lattice L = (L,∨,∧,·,e,\,/) such that

· is commutative:   xy = yx.

Remark:

Morphisms

Let L and M be commutative residuated lattices. A morphism from L to M is a function h : LM that is a homomorphism: h(xy) = h(x)∨h(y)  and  h(xy) = h(x)∧h(y)  and  h(x·y) = h(xh(y)  and  h(x\y) = h(x)\h(y)  and  h(x/y) = h(x)/h(y)   and  h(e) = e.

Properties

 Classtype Variety Equational theory Decidable Quasiequational theory Undecidable First-order theory Undecidable Locally finite No Residual size Unbounded Congruence distributive Yes Congruence modular Yes Congruence n-permutable Yes, n=2 Congruence regular No Congruence e-regular Yes Congruence uniform No Congruence extension property Yes Definable principal congruences No Equationally definable principal congruences No Amalgamation property Strong amalgamation property Epimorphisms are surjective

[Size 1]?:  1
[Size 2]?:  1
[Size 3]?:  3
[Size 4]?:  16
[Size 5]?:  100
[Size 6]?:  794

Subclasses

Commutative distributive residuated lattices
FLe-algebras

Superclasses

[Commutative multiplicative lattices]?
[Commutative residuated join-semilattices]?
[Commutative residuated meet-semilattices]?
Residuated lattices

HomePage | RecentChanges | Preferences
This page is read-only | View other revisions
Last edited April 6, 2003 1:52 pm (diff)
Search: