[Home]MV-algebras

HomePage | RecentChanges | Preferences

Abbreviation: MV

Definition

An MV-algebra (short for multivalued logic algebra) is a structure A = (A, + , 0, ¬) such that
(A, + , 0) is a commutative monoid,
¬¬x = x,
x + ¬0  = ¬0, and
¬(¬x + y) + y  = ¬(¬y + x) + x.

Remark: This is the definition from [Roberto L. O. Cignoli, Itala M. L. D'Ottaviano, Daniele Mundici, Algebraic foundations of many-valued reasoning, Trends in Logic---Studia Logica Library 7 Kluwer Academic Publishers (2000) x+231 MRreview]

Morphisms

Let A and B be MV-algebras. A morphism from A to B is a function h : AB that is a homomorphism: h(x + y) = h(x) + h(y)  and  hx) = ¬h(x)  and  h(0) = 0.

Definition

An MV-algebra is a structure A = (A, + , 0, ·, 1, ¬) such that
(A, ·, 1) is a commutative monoid,
¬ is a DeMorgan involution for + ,·:   ¬¬x = x  and  x + y = ¬( ¬x·¬y) ,
¬0 = 1  and  0·x = 0  and  ¬( ¬x + y) + y = ¬( ¬y + x) + x.

Definition

An MV-algebra is a basic logic algebra A = (A,∨,0,∧,1,·,→) such that
linearity:   (xy) ∨(yx)  = 1, and
BL:   xy = x·(xy).

Definition

A Wajsberg algebra is an algebra A = (A, →, ¬, 1) such that
1→x = x,
(xy)→((yz) →(xz)  = 1,
(xy)→y  = (yx)→x, and
x→¬y)→(yx) = 1.

Remark: Wajsberg algebras are term-equivalent to MV-algebras via xy = ¬x + y, 1 = ¬0 and x + y = ¬xy, 0 = ¬1.

Definition

A bounded hoop is an algebra A = (A, ·, →, 0, 1) such that (A, ·, →, 1) is a hoop, and 0→x = 1.

Remark: Bounded hoops are term-equivalent to Wajsberg algebras via x·y = ¬(x→¬y), 0 = ¬1, and ¬x = x→0. See [W. J. Blok, D. Pigozzi, On the structure of varieties with equationally definable principal congruences. III, Algebra Universalis 32 (1994) 545--608 MRreview] for details.

Some results

Examples

Properties

Classtype variety
Equational theory decidable
Quasiequational theory
First-order theory
Locally finite no
Residual size unbounded
Congruence distributive yes
Congruence modular yes
Congruence n-permutable yes, n = 2
Congruence e-regular yes, e = 1
Congruence uniform
Congruence extension property yes
Definable principal congruences
Equationally definable principal congruences no
Amalgamation property yes [Daniele Mundici, Bounded commutative BCK-algebras have the amalgamation property, Math. Japon. 32 (1987) 279--282 MRreview]
Strong amalgamation property
Epimorphisms are surjective

Finite members

[Size 1]?:  1
[Size 2]?:  1
[Size 3]?:  1

Subclasses

Boolean algebras

Superclasses

Generalized MV-algebras
Basic logic algebras
Wajsberg hoops


HomePage | RecentChanges | Preferences
This page is read-only | View other revisions
Last edited August 5, 2003 12:42 am (diff)
Search: