Strong amalgamation property

HomePage | RecentChanges | Preferences

Showing revision 1
Difference (from revision 1 to current revision) (minor diff, author diff)

Changed: 11,16c11,13
 strong amalgamation property if for every amalgam with A,B,C ∈ K and A ≠ Ø there exists a structure D ∈ K and embeddings f ' : B → D, g' : C → D such that f 'of = g'og and Im(f')∩Im(g') = Ø, where Im(f') = {f'(x)|x ∈ B}.
 strong amalgamation property, or SAP for short, if for every amalgam with A,B,C ∈ K there exists a structure D ∈ K and embeddings f ' : B → D, g' : C → D such that f 'of = g 'og and f '[B]∩g '[C] = (f ' of)[A] = (g ' og)[A], where for any set X and function h on X, h[X] = {h(x) | x ∈ X}.

Changed: 19c16,23
 [Generate list of all classes that mention the amalgamation property

Properties that imply the SAP

Amalgamation property  and  [Epimorphism are surjective]?
[Superamalgamation property]?

Properties implied by the SAP

Amalgamation property

[Generate list of all classes that mention the strong amalgamation property

Definition

An amalgam is a tuple (A,f,B,g,C) such that A,B,C are structures of the same signature, and f : A → B, g : A → C are embeddings (injective morphisms).

A class K of structures is said to have the strong amalgamation property if for every amalgam with A,B,C ∈ K and A ≠ Ø there exists a structure D ∈ K and embeddings f ' : B → D, g' : C → D such that f 'of = g'og and Im(f')∩Im(g') = Ø, where Im(f') = {f'(x)|x ∈ B}.

[Generate list of all classes that mention the amalgamation property together with it's value in that class (under construction)].

HomePage | RecentChanges | Preferences