Mathematical Structures: Algebraic posets

# Algebraic posets

HomePage | RecentChanges | Login

http://mathcs.chapman.edu/structuresold/files/Algebraic_posets.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Algebraic posets}

\abbreviation{APos}

\begin{definition}
An \emph{algebraic poset} is a \href{Directed_complete_partial_orders.pdf}{directed complete partial orders} $\mathbf{P}=\langle P,\leq \rangle$
such that

the set of compact elements below any element is directed and

every element is the join of all compact elements below it.

An element $c\in P$ is \emph{compact} if for every subset $S\subseteq P$ such that $c\le\bigvee S$, there exists
a finite subset $S_0$ of $S$ such that $c\le\bigvee S_0$.

The set of compact elements of $P$ is denoted by $K(P)$.
\end{definition}

\begin{morphisms}
Let $\mathbf{P}$ and $\mathbf{Q}$ be algebraic posets. A morphism from $\mathbf{P}$ to
$\mathbf{Q}$ is a function $f:P\rightarrow Q$ that is \emph{Scott-continuous}, which means that $f$ preserves all directed joins:

$z=\bigvee D\implies f(z)= \bigvee f[D]$
\end{morphisms}

\begin{basic_results}
\end{basic_results}

\begin{examples}
\begin{example}
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

\begin{tabular}{|ll|}\hline
Classtype & second-order\\\hline
Amalgamation property & \\\hline
Strong amalgamation property & \\\hline
Epimorphisms are surjective & \\\hline
\end{tabular}
\end{properties}
\end{table}
\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ \end{array}$
\end{finite_members}

\hyperbaseurl{http://math.chapman.edu/structures/files/}
\begin{subclasses}\

\href{Algebraic_semilattices.pdf}{Algebraic semilattices}

\end{subclasses}

\begin{superclasses}\

\href{Directed_complete_partial_orders.pdf}{Directed complete partial orders}

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}

\end{thebibliography}

\end{document}
%

HomePage | RecentChanges | Login