Mathematical Structures: Bounded residuated lattices

Bounded residuated lattices

http://mathcs.chapman.edu/structuresold/files/Bounded_residuated_lattices.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\hyperbaseurl{http://math.chapman.edu/structures/files/}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Bounded residuated lattices}

\abbreviation{RLat$_b$}

\begin{definition}
A \emph{bounded residuated lattice} is a \href{Residuated_lattices.pdf}{residuated lattice}
that is bounded:

$\bot$ is the least element:  $\bot\vee x=x$

$\top$ is the greatest element:  $\top\vee x=\top$
\end{definition}

\begin{morphisms}
Let $\mathbf{A}$ and $\mathbf{B}$ be bounded residuated lattices.
A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a residuated lattice homomorphism $h:A\rightarrow B$ that preserves the bounds:
$h(\bot)=\bot$ and $h(\top)=\top$.
\end{morphisms}

\begin{basic_results}
\end{basic_results}

\begin{examples}
\begin{example}
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

\begin{tabular}{|ll|}\hline
Classtype                       & variety \\\hline
Equational theory               & decidable \\\hline
Quasiequational theory          & undecidable \\\hline
First-order theory              & undecidable \\\hline
Locally finite                  & no \\\hline
Residual size                   & unbounded \\\hline
Congruence distributive         & yes \\\hline
Congruence modular              & yes \\\hline
Congruence $n$-permutable       & yes, $n=2$ \\\hline
Congruence regular              & yes \\\hline
Congruence uniform              & no \\\hline
Congruence extension property   & yes \\\hline
Definable principal congruences & no \\\hline
Equationally def. pr. cong.     & no \\\hline
Amalgamation property           & \\\hline
Strong amalgamation property    & \\\hline
Epimorphisms are surjective     & \\\hline
\end{tabular}
\end{properties}
\end{table}

\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$\qquad
$\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

\end{finite_members}

\begin{subclasses}\

\href{....pdf}{...} subvariety

\href{....pdf}{...} expansion

\end{subclasses}

\begin{superclasses}\

\href{....pdf}{...} supervariety

\href{....pdf}{...} subreduct

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}
F. Lastname, \emph{Title}, Journal, \textbf{1}, 23--45 \href{http://www.ams.org/mathscinet-getitem?mr=12a:08034}{MRreview}

\end{thebibliography}

\end{document}
%