Mathematical Structures: Complete lattices

# Complete lattices

HomePage | RecentChanges | Login

http://mathcs.chapman.edu/structuresold/files/Complete_lattices.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Complete lattices}

\abbreviation{CLat}
\begin{definition}
A \emph{complete lattice} is a structure $\mathbf{L}=\langle L,\bigvee,\bigwedge\rangle$ such that $\bigvee,\bigwedge$ map
subsets of $L$ to elements of $L$ and

$\langle L,\vee,\wedge\rangle$ is a \href{Lattices.pdf}{Lattices}

$\bigvee S$ is the least upper bound of $S$

$\bigwedge S$ is the greatest lower bound of $S$
\end{definition}
\begin{morphisms}
Let $\mathbf{L}$ and $\mathbf{M}$ be complete lattices.
A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a complete homomorphism:

$h(\bigvee S)=\bigvee h[S] \mbox{ and } h(\bigwedge S)=\bigwedge h[S]$
\end{morphisms}
\begin{basic_results}
\end{basic_results}
\begin{examples}
\begin{example}
$\langle \mathcal{P}(X),\bigcup,\bigcap\rangle$, the set of all subsets of a set $X$, with union and intersection of families of sets.
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

\begin{tabular}{|ll|}\hline
Classtype & Second-order\\\hline
Amalgamation property & Yes\\\hline
Strong amalgamation property & Yes\\\hline
Epimorphisms are surjective & Yes\\\hline
\end{tabular}
\end{properties}
\end{table}
\hyperbaseurl{http://math.chapman.edu/structures/files/}
\parskip0pt
\begin{subclasses}\

\href{Algebraic_lattices.pdf}{Algebraic lattices}

\end{subclasses}
\begin{superclasses}\

\href{Lattices.pdf}{Lattices}

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}

\end{thebibliography}

\end{document}
%

HomePage | RecentChanges | Login