Mathematical Structures: Involutive residuated lattices

# Involutive residuated lattices

HomePage | RecentChanges | Login

http://mathcs.chapman.edu/structuresold/files/Involutive_residuated_lattices.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\addtolength{\oddsidemargin}{-.5in}
\addtolength{\evensidemargin}{-.5in}
\addtolength{\textwidth}{1in}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\hyperbaseurl{http://math.chapman.edu/structures/files/}
\pagestyle{myheadings}\thispagestyle{myheadings}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Involutive residuated lattices}
\quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Involutive_residuated_lattices}{edit}

\abbreviation{InRL}

\begin{definition}
An \emph{involutive residuated lattice} is a structure $\mathbf{A}=\langle A, \vee, \wedge, \cdot, 1, \neg\rangle$ of type $\langle 2, 2, 2, 0, 1\rangle$ such that

$\langle A, \vee, \wedge, \neg\rangle$ is an \href{Involutive_lattice.pdf}{involutive lattice}

$\langle A, \cdot, 1\rangle$ is a \href{Monoids.pdf}{monoid}

$xy\le z\iff x\le \neg(y(\neg z))\iff y\le \neg((\neg z)x)$

Remark: This is a template.
If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.
\end{definition}

\begin{morphisms}
Let $\mathbf{A}$ and $\mathbf{B}$ be ... . A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x ... y)=h(x) ... h(y)$
\end{morphisms}

\begin{definition}
An \emph{...} is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that

$...$ is ...:  $axiom$

$...$ is ...:  $axiom$
\end{definition}

\begin{basic_results}
\end{basic_results}

\begin{examples}
\begin{example}
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.

\begin{tabular}{|ll|}\hline
Classtype                       & (value, see description) \cite{Ln19xx} \\\hline
Equational theory               & \\\hline
Quasiequational theory          & \\\hline
First-order theory              & \\\hline
Locally finite                  & \\\hline
Residual size                   & \\\hline
Congruence distributive         & \\\hline
Congruence modular              & \\\hline
Congruence $n$-permutable       & \\\hline
Congruence regular              & \\\hline
Congruence uniform              & \\\hline
Congruence extension property   & \\\hline
Definable principal congruences & \\\hline
Equationally def. pr. cong.     & \\\hline
Amalgamation property           & \\\hline
Strong amalgamation property    & \\\hline
Epimorphisms are surjective     & \\\hline
\end{tabular}
\end{properties}
\end{table}

\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$\qquad
$\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

\end{finite_members}

\begin{subclasses}\

\href{....pdf}{...} subvariety

\href{....pdf}{...} expansion

\end{subclasses}

\begin{superclasses}\

\href{....pdf}{...} supervariety

\href{....pdf}{...} subreduct

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}
F. Lastname, \emph{Title}, Journal, \textbf{1}, 23--45 \href{http://www.ams.org/mathscinet-getitem?mr=12a:08034}{MRreview}

\end{thebibliography}

\end{document}
%

HomePage | RecentChanges | Login
This page is read-only | View other revisions
Last edited July 24, 2004 2:16 pm by Jipsen (diff)
Search: