Mathematical Structures: Varieties

# Varieties

### Varieties of universal algebras

A variety is a class of structures of the same signature that is defined by a set of identities, i.e., universally quantified equations or, more generally, atomic formulas.

Varieties are also called equational classes.

By a fundamental result of [Garrett Birkhoff, On the structure of abstract algebras, Proceedings of the Cambridge Philosophical Society, 31:433--454, 1935] a class $\mathcal{K}$ of algebras is a variety iff it is closed under the operators $H$, $S$, $P$ (i.e., $H\mathcal{K}\subseteq\mathcal{K}$, $S\mathcal{K}\subseteq\mathcal{K}$, and $P\mathcal{K}\subseteq\mathcal{K}$), where

$H\mathcal{K}=\{$homomorphic images of members of $\mathcal{K}\}$
$S\mathcal{K}=\{$subalgebras of members of $\mathcal{K}\}$
$P\mathcal{K}=\{$direct products of members of $\mathcal{K}\}$.

See Stanley N. Burris and H.P. Sankappanavar, A Course in Universal Algebra for more details.

Show all pages on varieties

A picture of some theories ordered by interpretability

### Some varieties and quasivarieties listed by signature and (first) subclass relation

Proper quasivarieties are marked by a *

$\langle \rangle$ Sets (LaTeX)

$\langle 0\rangle$ Pointed sets (LaTeX)

$\langle 1\rangle$ Mono-unary algebras (LaTeX)

$\langle 1,0\rangle$ Pointed mono-unary algebras (LaTeX)

$\langle 1,1\rangle$ Duo-unary algebras (LaTeX)

$\langle 1,1,\ldots\rangle$ Unary algebras (LaTeX)

$\langle 2\rangle$ Groupoids (LaTeX)

$\langle 2,0\rangle$ Pointed groupoids (LaTeX)

$\langle 2,1\rangle$ Groupoids with a unary operation (LaTeX)

$\langle 2,1,0\rangle$ Pointed groupoids with a unary operation (LaTeX)

$\langle 2,1,0,1,1,\ldots\rangle$ Pointed groupoids with a unary operations (LaTeX)

$\langle 2,2\rangle$ Duo-groupoids (LaTeX)

$\langle 2,2,0\rangle$ Pointed duo-groupoids (LaTeX)

$\langle 2,2,1\rangle$

$\langle 2,2,\ldots\rangle$

$\langle 2,0,2,0\rangle$

$\langle 2,1,0,2\rangle$

$\langle 2,1,0,2,0\rangle$

$\langle 2,0,2,0,1\rangle$

$\langle 2,0,2,0,1,1\rangle$

$\langle 2,0,2,0,1,1\rangle$

$\langle 2,0,2,0,1,2\rangle$

$\langle 2,0,2,0,1,2,0\rangle$

$\langle 2,0,2,0,1,2,1,0\rangle$

$\langle 2,0,2,0,1,2,0,2,2\rangle$

$\langle 2,0,2,0,1,\ldots\rangle$

$\langle 2,0,2,0,\ldots\rangle$

$\langle 2,0,2,0,\ldots\rangle$

$\langle 2,2,2\rangle$

$\langle 2,2,2,0\rangle$

$\langle 2,2,2,1,0\rangle$

$\langle 2,2,2,0,2\rangle$

$\langle 2,2,2,0,2,2\rangle$

$\langle 2,0,2,0,2,2\rangle$

$\langle 2,0,2,0,2,0,2\rangle$

$\langle 2,0,2,0,2,0,2,2\rangle$

$\langle 2,0,2,0,1,2,2\rangle$

$\langle 2,2,0,2,0,1,2,2\rangle$