Mathematical Structures: BCK-join-semilattices

# BCK-join-semilattices

HomePage | RecentChanges | Login

Difference (from prior major revision) (author diff)

Changed: 73,84c73,84
 Classtype & variety\\\hline Equational theory & \\\hline Quasiequational theory & \\\hline First-order theory & \\\hline Locally finite & \\\hline Residual size & \\\hline Congruence distributive & no\\\hline Congruence modular & \\\hline Congruence n-permutable & \\\hline Congruence regular & \\\hline Congruence uniform & \\\hline Congruence extension property & \\\hline
 Classtype & variety\\\hline Equational theory & \\\hline Quasiequational theory & \\\hline First-order theory & \\\hline Locally finite & \\\hline Residual size & \\\hline Congruence distributive & \\\hline Congruence modular & \\\hline Congruence n-permutable & \\\hline Congruence regular & \\\hline Congruence uniform & \\\hline Congruence extension property & \\\hline

Changed: 86,89c86,89
 Equationally def. pr. cong. & \\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline
 Equationally def. pr. cong. & \\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline

http://mathcs.chapman.edu/structuresold/files/BCK-join-semilattices.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\addtolength{\oddsidemargin}{-.5in}
\addtolength{\evensidemargin}{-.5in}
\addtolength{\textwidth}{1in}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\pagestyle{myheadings}\thispagestyle{myheadings}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large BCK-join-semilattices}
\quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=BCK-join-semilattices}{edit}

\abbreviation{BCKJSlat}
\begin{definition}
A \emph{BCK-join-semilattice} is a structure $\mathbf{A}=\langle A,\vee,\rightarrow,1\rangle$ of type $\langle 2,2,0\rangle$ such that

(1):  $(x\rightarrow y)\rightarrow ((y\rightarrow z)\rightarrow (x\rightarrow z)) = 1$

(2):  $1\rightarrow x = x$

(3):  $x\rightarrow 1 = 1$

(4):  $x\rightarrow (x\vee y) = 1$

(5):  $x\vee((x\rightarrow y)\rightarrow y) = ((x\rightarrow y)\rightarrow y)$

$\vee$ is idempotent:  $x\vee x = x$

$\vee$ is commutative:  $x\vee y = y\vee x$

$\vee$ is associative:  $(x\vee y)\vee z = x\vee (y\vee z)$

Remark:
$x\le y \iff x\rightarrow y=1$ is a partial order, with $1$ as greatest element, and $\vee$ is a join
for this order. \cite{Idziak1984}
\end{definition}

\begin{morphisms}
Let $\mathbf{A}$ and $\mathbf{B}$ be BCK-join-semilattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\rightarrow y)=h(x)\rightarrow h(y)$ and $h(1)=1$
\end{morphisms}

\begin{basic_results}
\end{basic_results}

\begin{examples}
\begin{example}
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

\begin{tabular}{|ll|}\hline
Classtype                       & variety\\\hline
Equational theory               & \\\hline
Quasiequational theory          & \\\hline
First-order theory              & \\\hline
Locally finite                  & \\\hline
Residual size                   & \\\hline
Congruence distributive         & \\\hline
Congruence modular              & \\\hline
Congruence n-permutable         & \\\hline
Congruence regular              & \\\hline
Congruence uniform              & \\\hline
Congruence extension property   & \\\hline
Definable principal congruences & \\\hline
Equationally def. pr. cong.     & \\\hline
Amalgamation property           & \\\hline
Strong amalgamation property    & \\\hline
Epimorphisms are surjective     & \\\hline
\end{tabular}
\end{properties}
\end{table}
\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$
\end{finite_members}
\hyperbaseurl{http://math.chapman.edu/structures/files/}
\parskip0pt
\begin{subclasses}\

\href{BCK-lattices.pdf}{BCK-lattices}

\end{subclasses}
\begin{superclasses}\

\href{BCK-algebras.pdf}{BCK-algebras}

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Idziak1984}
Pawel M. Idziak, \emph{Lattice operation in BCK-algebras},
Math. Japon., \textbf{29}, 1984, 839--846 \href{http://www.ams.org/mathscinet-getitem?mr=87b:06025a}{MRreview}

\end{thebibliography}

\end{document}
%

HomePage | RecentChanges | Login
This page is read-only | View other revisions
Last edited June 27, 2004 10:04 am by Peter (diff)
Search: