Mathematical Structures: Cancellative monoids

Cancellative monoids

Difference (from prior major revision) (no other diffs)

Changed: 1,117c1,120
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Cancellative monoids} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Cancellative_monoids}{edit} \abbreviation{CanMon} \begin{definition} A \emph{cancellative monoid} is a \href{Monoids.pdf}{monoids} $\mathbf{M}=\left\langle M,\cdot ,e\right\rangle$ such that $\cdot$ is left cancellative: $z\cdot x=z\cdot y\implies x=y$ $\cdot$ is right cancellative: $x\cdot z=y\cdot z\implies x=y$ \end{definition} \begin{morphisms} Let $\mathbf{M}$ and $\mathbf{N}$ be cancellative monoids. A morphism from $\mathbf{M}$ to $\mathbf{N}$ is a function $h:M\rightarrow N$ that is a homomorphism: $h(x\cdot y)=h(x)\cdot h(y)$, $h(e)=e$ \end{morphisms} \begin{basic_results} All free monoids are cancellative. All finite (left or right) cancellative monoids are reducts of \href{Groups.pdf}{groups}. \end{basic_results} \begin{examples} \begin{example} $\langle\mathbb{N},+,0\rangle$, the natural numbers, with addition and zero. \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & quasivariety\\\hline Equational theory & \\\hline Quasiequational theory & \\\hline First-order theory & undecidable\\\hline Locally finite & no\\\hline Residual size & unbounded\\\hline Congruence distributive & no\\\hline Congruence modular & \\\hline Congruence n-permutable & \\\hline Congruence regular & \\\hline Congruence uniform & \\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &1\\ f(6)= &2\\ f(7)= &1\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Groups.pdf}{Groups} \href{Cancellative_residuated_lattices.pdf}{Cancellative residuated lattices} \end{subclasses} \begin{superclasses}\ \href{Cancellative_semigroups.pdf}{Cancellative semigroups} \href{Monoids.pdf}{Monoids} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Cancellative monoids} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Cancellative_monoids}{edit} \abbreviation{CanMon} \begin{definition} A \emph{cancellative monoid} is a \href{Monoids.pdf}{monoid} $\mathbf{M}=\langle M, \cdot, e\rangle$ such that $\cdot$ is left cancellative: $z\cdot x=z\cdot y\implies x=y$ $\cdot$ is right cancellative: $x\cdot z=y\cdot z\implies x=y$ \end{definition} \begin{morphisms} Let $\mathbf{M}$ and $\mathbf{N}$ be cancellative monoids. A morphism from $\mathbf{M}$ to $\mathbf{N}$ is a function $h:M\rightarrow N$ that is a homomorphism: $h(x\cdot y)=h(x)\cdot h(y)$, $h(e)=e$ \end{morphisms} \begin{basic_results} All free monoids are cancellative. All finite (left or right) cancellative monoids are reducts of \href{Groups.pdf}{groups}. \end{basic_results} \begin{examples} \begin{example} $\langle\mathbb{N},+,0\rangle$, the natural numbers, with addition and zero. \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & quasivariety\\\hline Equational theory & \\\hline Quasiequational theory & \\\hline First-order theory & undecidable\\\hline Locally finite & no\\\hline Residual size & unbounded\\\hline Congruence distributive & no\\\hline Congruence modular & \\\hline Congruence n-permutable & \\\hline Congruence regular & \\\hline Congruence uniform & \\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &1\\ f(6)= &2\\ f(7)= &1\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \begin{subclasses}\ \href{Groups.pdf}{Groups} \href{Cancellative_residuated_lattices.pdf}{Cancellative residuated lattices} \end{subclasses} \begin{superclasses}\ \href{Cancellative_semigroups.pdf}{Cancellative semigroups} \href{Monoids.pdf}{Monoids} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %

http://mathcs.chapman.edu/structuresold/files/Cancellative_monoids.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Cancellative monoids}

\abbreviation{CanMon}
\begin{definition}
A \emph{cancellative monoid} is a \href{Monoids.pdf}{monoid} $\mathbf{M}=\langle M, \cdot, e\rangle$ such that

$\cdot$ is left cancellative:  $z\cdot x=z\cdot y\implies x=y$

$\cdot$ is right cancellative:  $x\cdot z=y\cdot z\implies x=y$
\end{definition}

\begin{morphisms}
Let $\mathbf{M}$ and $\mathbf{N}$ be cancellative monoids. A morphism from $\mathbf{M}$
to $\mathbf{N}$ is a function $h:M\rightarrow N$ that is a homomorphism:

$h(x\cdot y)=h(x)\cdot h(y)$, $h(e)=e$
\end{morphisms}

\begin{basic_results}
All free monoids are cancellative.

All finite (left or right) cancellative monoids are reducts of \href{Groups.pdf}{groups}.
\end{basic_results}

\begin{examples}
\begin{example}
$\langle\mathbb{N},+,0\rangle$, the natural numbers, with addition and
zero.
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

\begin{tabular}{|ll|}\hline
Classtype & quasivariety\\\hline
Equational theory & \\\hline
Quasiequational theory & \\\hline
First-order theory & undecidable\\\hline
Locally finite & no\\\hline
Residual size & unbounded\\\hline
Congruence distributive & no\\\hline
Congruence modular & \\\hline
Congruence n-permutable & \\\hline
Congruence regular & \\\hline
Congruence uniform & \\\hline
Congruence extension property & \\\hline
Definable principal congruences & \\\hline
Equationally def. pr. cong. & \\\hline
Amalgamation property & \\\hline
Strong amalgamation property & \\\hline
Epimorphisms are surjective & \\\hline
\end{tabular}
\end{properties}
\end{table}

\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &1\\ f(6)= &2\\ f(7)= &1\\ \end{array}$
\end{finite_members}

\hyperbaseurl{http://math.chapman.edu/structures/files/}
\begin{subclasses}\

\href{Groups.pdf}{Groups}

\href{Cancellative_residuated_lattices.pdf}{Cancellative residuated lattices}

\end{subclasses}
\begin{superclasses}\

\href{Cancellative_semigroups.pdf}{Cancellative semigroups}

\href{Monoids.pdf}{Monoids}

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}

\end{thebibliography}

\end{document}
%