Mathematical Structures: Complemented modular lattices

# Complemented modular lattices

Difference (from prior major revision) (no other diffs)

Changed: 1,110c1,110
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Complemented modular lattices} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Complemented_modular_lattices}{edit} \abbreviation{CdMLat} \begin{definition} A \emph{complemented modular lattice} is a \href{Complemented_lattices.pdf}{complemented lattices} $\mathbf{L}=\left\langle L,\vee ,0,\wedge ,1\right\rangle$ that is \href{Modular_lattices.pdf}{modular lattices}: $(( x\wedge z) \vee y) \wedge z=( x\wedge z) \vee ( y\wedge z)$ \end{definition} \begin{morphisms} Let $\mathbf{L}$ and $\mathbf{M}$ be complemented modular lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a bounded lattice homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0$, $h(1)=1$ \end{morphisms} \begin{basic_results} This class generates the same variety as the class of its finite members plus the non-desargean planes. \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & first-order\\\hline Equational theory & decidable\\\hline Quasiequational theory & undecidable\\\hline First-order theory & undecidable\\\hline Locally finite & no\\\hline Residual size & unbounded\\\hline Congruence distributive & yes\\\hline Congruence modular & yes\\\hline Congruence n-permutable & yes\\\hline Congruence regular & no\\\hline Congruence uniform & no\\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &0\\ f(4)= &1\\ f(5)= &1\\ f(6)= &\\ f(7)= &\\ f(8)= &\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Boolean_lattices.pdf}{Boolean lattices} \end{subclasses} \begin{superclasses}\ \href{Bounded_lattices.pdf}{Bounded lattices} \href{Modular_lattices.pdf}{Modular lattices} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Complemented modular lattices} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Complemented_modular_lattices}{edit} \abbreviation{CdMLat} \begin{definition} A \emph{complemented modular lattice} is a \href{Complemented_lattices.pdf}{complemented lattices} $\mathbf{L}=\left\langle L,\vee ,0,\wedge ,1\right\rangle$ that is \href{Modular_lattices.pdf}{modular lattices}: $(( x\wedge z) \vee y) \wedge z=( x\wedge z) \vee ( y\wedge z)$ \end{definition} \begin{morphisms} Let $\mathbf{L}$ and $\mathbf{M}$ be complemented modular lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a bounded lattice homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0$, $h(1)=1$ \end{morphisms} \begin{basic_results} This class generates the same variety as the class of its finite members plus the non-desargean planes. \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & first-order\\\hline Equational theory & decidable\\\hline Quasiequational theory & undecidable\\\hline First-order theory & undecidable\\\hline Locally finite & no\\\hline Residual size & unbounded\\\hline Congruence distributive & yes\\\hline Congruence modular & yes\\\hline Congruence n-permutable & yes\\\hline Congruence regular & no\\\hline Congruence uniform & no\\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &0\\ f(4)= &1\\ f(5)= &1\\ f(6)= &\\ f(7)= &\\ f(8)= &\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Boolean_lattices.pdf}{Boolean lattices} \end{subclasses} \begin{superclasses}\ \href{Bounded_lattices.pdf}{Bounded lattices} \href{Modular_lattices.pdf}{Modular lattices} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %

http://mathcs.chapman.edu/structuresold/files/Complemented_modular_lattices.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Complemented modular lattices}

\abbreviation{CdMLat}
\begin{definition}
A \emph{complemented modular lattice} is a \href{Complemented_lattices.pdf}{complemented lattices}
$\mathbf{L}=\left\langle L,\vee ,0,\wedge ,1\right\rangle$ that is

\href{Modular_lattices.pdf}{modular lattices}:  $(( x\wedge z) \vee y) \wedge z=( x\wedge z) \vee ( y\wedge z)$
\end{definition}
\begin{morphisms}
Let $\mathbf{L}$ and $\mathbf{M}$ be complemented modular lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a
bounded lattice homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0$, $h(1)=1$
\end{morphisms}
\begin{basic_results}
This class generates the same variety as the class of its finite
members plus the non-desargean planes.
\end{basic_results}
\begin{examples}
\begin{example}
\end{example}
\end{examples}
\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

\begin{tabular}{|ll|}\hline
Classtype & first-order\\\hline
Equational theory & decidable\\\hline
Quasiequational theory & undecidable\\\hline
First-order theory & undecidable\\\hline
Locally finite & no\\\hline
Residual size & unbounded\\\hline
Congruence distributive & yes\\\hline
Congruence modular & yes\\\hline
Congruence n-permutable & yes\\\hline
Congruence regular & no\\\hline
Congruence uniform & no\\\hline
Congruence extension property & \\\hline
Definable principal congruences & \\\hline
Equationally def. pr. cong. & \\\hline
Amalgamation property & \\\hline
Strong amalgamation property & \\\hline
Epimorphisms are surjective & \\\hline
\end{tabular}
\end{properties}
\end{table}
\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &0\\ f(4)= &1\\ f(5)= &1\\ f(6)= &\\ f(7)= &\\ f(8)= &\\ \end{array}$
\end{finite_members}
\hyperbaseurl{http://math.chapman.edu/structures/files/}
\parskip0pt
\begin{subclasses}\

\href{Boolean_lattices.pdf}{Boolean lattices}

\end{subclasses}
\begin{superclasses}\

\href{Bounded_lattices.pdf}{Bounded lattices}

\href{Modular_lattices.pdf}{Modular lattices}

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}

\end{thebibliography}

\end{document}
%