Mathematical Structures: Integral relation algebras

# Integral relation algebras

Difference (from prior major revision) (no other diffs)

Changed: 28,30c28,29
 \Large Name of class \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Template}{edit} % Note: replace "Template" with Name_of_class in previous line

Changed: 32c31
 \abbreviation{Abbr}
 \abbreviation{IRA}

Changed: 35,40c34,35
 A ... is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that $\langle A,...\rangle$ is a \href{Name_of_class.pdf}{name of class} $op_1$ is (name of property): $axiom_1$
 An integral relation algebra is a \href{Relation_algebras.pdf}{relation algebra} $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,\circ,^{\smile},e\rangle$ that is

Changed: 42c37
 $op_2$ is ...: $...$
 integral: $x\circ y=0\implies x=0\mbox{ or }y=0$

Changed: 78,91c73,86
 Classtype & (value, see description) \cite{Ln19xx} \\\hline Equational theory & \\\hline Quasiequational theory & \\\hline First-order theory & \\\hline Locally finite & \\\hline Residual size & \\\hline Congruence distributive & \\\hline Congruence modular & \\\hline Congruence $n$-permutable & \\\hline Congruence regular & \\\hline Congruence uniform & \\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline
 Classtype & universal \\\hline Equational theory & undecidable \\\hline Quasiequational theory & undecidable \\\hline First-order theory & undecidable \\\hline Locally finite & no \\\hline Residual size & no \\\hline Congruence distributive & yes \\\hline Congruence modular & yes \\\hline Congruence $n$-permutable & yes \\\hline Congruence regular & yes \\\hline Congruence uniform & yes \\\hline Congruence extension property & yes \\\hline Definable principal congruences & no \\\hline Equationally def. pr. cong. & no \\\hline

http://mathcs.chapman.edu/structuresold/files/Integral_relation_algebras.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\hyperbaseurl{http://math.chapman.edu/structures/files/}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Integral relation algebras}

\abbreviation{IRA}

\begin{definition}
An \emph{integral relation algebra} is a \href{Relation_algebras.pdf}{relation algebra} $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,\circ,^{\smile},e\rangle$ that is

\emph{integral}:  $x\circ y=0\implies x=0\mbox{ or }y=0$

Remark: This is a template.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.
\end{definition}

\begin{morphisms}
Let $\mathbf{A}$ and $\mathbf{B}$ be ... . A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x ... y)=h(x) ... h(y)$
\end{morphisms}

\begin{definition}
An \emph{...} is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that

$...$ is ...:  $axiom$

$...$ is ...:  $axiom$
\end{definition}

\begin{basic_results}
\end{basic_results}

\begin{examples}
\begin{example}
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.

\begin{tabular}{|ll|}\hline
Classtype                       & universal \\\hline
Equational theory               & undecidable \\\hline
Quasiequational theory          & undecidable \\\hline
First-order theory              & undecidable \\\hline
Locally finite                  & no \\\hline
Residual size                   & no \\\hline
Congruence distributive         & yes \\\hline
Congruence modular              & yes \\\hline
Congruence $n$-permutable       & yes \\\hline
Congruence regular              & yes \\\hline
Congruence uniform              & yes \\\hline
Congruence extension property   & yes \\\hline
Definable principal congruences & no \\\hline
Equationally def. pr. cong.     & no \\\hline
Amalgamation property           & \\\hline
Strong amalgamation property    & \\\hline
Epimorphisms are surjective     & \\\hline
\end{tabular}
\end{properties}
\end{table}

\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$\qquad
$\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

\end{finite_members}

\begin{subclasses}\

\href{....pdf}{...} subvariety

\href{....pdf}{...} expansion

\end{subclasses}

\begin{superclasses}\

\href{....pdf}{...} supervariety

\href{....pdf}{...} subreduct

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}
F. Lastname, \emph{Title}, Journal, \textbf{1}, 23--45 \href{http://www.ams.org/mathscinet-getitem?mr=12a:08034}{MRreview}

\end{thebibliography}

\end{document}
%