Mathematical Structures: Lattice-ordered monoids

Lattice-ordered monoids

Difference (from prior major revision) (author diff)

Changed: 34c34
 A lattice-ordered monoid (or $\ell$-monoid) is a structure $\mathbf{A}=\langle A,\vee,\wedge,\cdot,1\rangle$ of type $\langle 2,2,2,0\rangle$ such that
 A lattice-ordered monoid (or $\ell$-monoid) is a structure $\mathbf{A}=\langle A\vee,\wedge,\cdot,1\rangle$ of type $\langle 2,2,2,0\rangle$ such that

Changed: 38c38
 $\langle A,\cdot,1\rangle$ is a \href{Monoids.pdf}{monoids}
 $\langle A,\cdot,1\rangle$ is a \href{Monoids.pdf}{monoid}

Changed: 49,50c49,53
 Let $\mathbf{A}$ and $\mathbf{B}$ be ... . A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x ... y)=h(x) ... h(y)$
 Let $\mathbf{A}$ and $\mathbf{B}$ be lattice ordered monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \vee y)=h(x) \vee h(y)$, $h(x \wedge y)=h(x) \wedge h(y)$, $h(x \cdot y)=h(x) \cdot h(y)$, $h(1)=1$.

Removed: 53,61d55
 \begin{definition} A ... is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that $...$ is ...: $axiom$ $...$ is ...: $axiom$ \end{definition}

Changed: 101,102c95,96
 f(2)= &\\ f(3)= &\\
 f(2)= &2\\ f(3)= &8\\

http://mathcs.chapman.edu/structuresold/files/Lattice-ordered_monoids.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\hyperbaseurl{http://math.chapman.edu/structures/files/}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Lattice-ordered monoids}

\abbreviation{LMon}

\begin{definition}
A \emph{lattice-ordered monoid} (or \emph{$\ell$-monoid}) is a structure $\mathbf{A}=\langle A\vee,\wedge,\cdot,1\rangle$ of type $\langle 2,2,2,0\rangle$ such that

$\langle A,\vee,\wedge\rangle$ is a \href{Lattices.pdf}{lattice}

$\langle A,\cdot,1\rangle$ is a \href{Monoids.pdf}{monoid}

$\cdot$ distributes over $\vee$:  $x(y\vee z)=xy\vee xz$, $(x\vee y)z=xz\vee yz$

Remark: This is a template.
If you know something about this class, click on the Edit text of this page'' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.
\end{definition}

\begin{morphisms}
Let $\mathbf{A}$ and $\mathbf{B}$ be lattice ordered monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x \vee y)=h(x) \vee h(y)$,
$h(x \wedge y)=h(x) \wedge h(y)$,
$h(x \cdot y)=h(x) \cdot h(y)$,
$h(1)=1$.
\end{morphisms}

\begin{basic_results}
\end{basic_results}

\begin{examples}
\begin{example}
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.

\begin{tabular}{|ll|}\hline
Classtype                       & variety \\\hline
Equational theory               & \\\hline
Quasiequational theory          & \\\hline
First-order theory              & \\\hline
Locally finite                  & \\\hline
Residual size                   & \\\hline
Congruence distributive         & yes\\\hline
Congruence modular              & yes\\\hline
Congruence $n$-permutable       & \\\hline
Congruence regular              & \\\hline
Congruence uniform              & \\\hline
Congruence extension property   & \\\hline
Definable principal congruences & \\\hline
Equationally def. pr. cong.     & \\\hline
Amalgamation property           & \\\hline
Strong amalgamation property    & \\\hline
Epimorphisms are surjective     & \\\hline
\end{tabular}
\end{properties}
\end{table}

\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ f(2)= &2\\ f(3)= &8\\ f(4)= &\\ f(5)= &\\ \end{array}$\qquad
$\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

\end{finite_members}

\begin{subclasses}\

\href{Residuated_lattices.pdf}{Residuated lattices} expanded type

\end{subclasses}

\begin{superclasses}\

\href{Lattice-ordered_semigroups.pdf}{Lattice ordered semigroups} reduced type

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Lastname19xx}
F. Lastname, \emph{Title}, Journal, \textbf{1}, 23--45 \href{http://www.ams.org/mathscinet-getitem?mr=12a:08034}{MRreview}

\end{thebibliography}

\end{document}
%