Mathematical Structures: Pseudocomplemented distributive lattices

# Pseudocomplemented distributive lattices

Difference (from prior major revision) (no other diffs)

Changed: 1,133c1,133
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Pseudocomplemented distributive lattices} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Pseudocomplemented_distributive_lattices}{edit} \abbreviation{pcDLat} \begin{definition} A \emph{pseudocomplemented distributive lattice} is a structure $\mathbf{L}=\langle L,\vee,0,\wedge,^*\rangle$ such that $\langle L,\vee,0,\wedge\rangle$ is a \href{Distributive_lattices.pdf}{distributive lattices} with bottom element $0$ $x^*$ is the \emph{pseudo complement} of $x$: $y\leq x^* \iff x\wedge y=0$ \end{definition} \begin{morphisms} Let $\mathbf{L}$ and $\mathbf{M}$ be pseudocomplemented distributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0$, $h(x^*)=h(x)^*$ \end{morphisms} \begin{definition} A \emph{pseudocomplemented distributive lattice} is a structure $\mathbf{L}=\langle L,\vee,0,\wedge,^*\rangle$ such that $\langle L,\vee,0,\wedge\rangle$ is a \href{Distributive_lattices.pdf}{distributive lattices} $0$ is the bottom element: $0\leq x$ $x\wedge(x\wedge y)^*=x\wedge y^*$ $x\wedge 0^*=x$ $0^{**}=0$ \end{definition} \begin{basic_results} Pseudocomplemented distributive lattices are term equivalent to \href{Distributive_p-algebras.pdf}{distributive p-algebras}. \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & variety\\\hline Equational theory & decidable\\\hline Quasiequational theory & \\\hline First-order theory & \\\hline Congruence distributive & yes\\\hline Congruence modular & yes\\\hline Congruence n-permutable & \\\hline Congruence regular & \\\hline Congruence uniform & \\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline Amalgamation property & yes\\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline Locally finite & \\\hline Residual size & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Distributive_double_p-algebras.pdf}{Distributive double p-algebras} \end{subclasses} \begin{superclasses}\ \href{Distributive_lattices.pdf}{Distributive lattices} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Pseudocomplemented distributive lattices} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Pseudocomplemented_distributive_lattices}{edit} \abbreviation{pcDLat} \begin{definition} A \emph{pseudocomplemented distributive lattice} is a structure $\mathbf{L}=\langle L,\vee,0,\wedge,^*\rangle$ such that $\langle L,\vee,0,\wedge\rangle$ is a \href{Distributive_lattices.pdf}{distributive lattices} with bottom element $0$ $x^*$ is the \emph{pseudo complement} of $x$: $y\leq x^* \iff x\wedge y=0$ \end{definition} \begin{morphisms} Let $\mathbf{L}$ and $\mathbf{M}$ be pseudocomplemented distributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0$, $h(x^*)=h(x)^*$ \end{morphisms} \begin{definition} A \emph{pseudocomplemented distributive lattice} is a structure $\mathbf{L}=\langle L,\vee,0,\wedge,^*\rangle$ such that $\langle L,\vee,0,\wedge\rangle$ is a \href{Distributive_lattices.pdf}{distributive lattices} $0$ is the bottom element: $0\leq x$ $x\wedge(x\wedge y)^*=x\wedge y^*$ $x\wedge 0^*=x$ $0^{**}=0$ \end{definition} \begin{basic_results} Pseudocomplemented distributive lattices are term equivalent to \href{Distributive_p-algebras.pdf}{distributive p-algebras}. \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & variety\\\hline Equational theory & decidable\\\hline Quasiequational theory & \\\hline First-order theory & \\\hline Congruence distributive & yes\\\hline Congruence modular & yes\\\hline Congruence n-permutable & \\\hline Congruence regular & \\\hline Congruence uniform & \\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline Amalgamation property & yes\\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline Locally finite & \\\hline Residual size & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Distributive_double_p-algebras.pdf}{Distributive double p-algebras} \end{subclasses} \begin{superclasses}\ \href{Distributive_lattices.pdf}{Distributive lattices} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %

http://mathcs.chapman.edu/structuresold/files/Pseudocomplemented_distributive_lattices.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Pseudocomplemented distributive lattices}

\abbreviation{pcDLat}

\begin{definition}
A \emph{pseudocomplemented distributive lattice} is a structure $\mathbf{L}=\langle L,\vee,0,\wedge,^*\rangle$ such that

$\langle L,\vee,0,\wedge\rangle$ is a \href{Distributive_lattices.pdf}{distributive lattices} with bottom element $0$

$x^*$ is the \emph{pseudo complement} of $x$:  $y\leq x^* \iff x\wedge y=0$
\end{definition}

\begin{morphisms}
Let $\mathbf{L}$ and $\mathbf{M}$ be pseudocomplemented distributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0$, $h(x^*)=h(x)^*$
\end{morphisms}

\begin{definition}
A \emph{pseudocomplemented distributive lattice} is a structure $\mathbf{L}=\langle L,\vee,0,\wedge,^*\rangle$ such that

$\langle L,\vee,0,\wedge\rangle$ is a \href{Distributive_lattices.pdf}{distributive lattices}

$0$ is the bottom element:  $0\leq x$

$x\wedge(x\wedge y)^*=x\wedge y^*$

$x\wedge 0^*=x$

$0^{**}=0$
\end{definition}

\begin{basic_results}
Pseudocomplemented distributive lattices are term equivalent to \href{Distributive_p-algebras.pdf}{distributive p-algebras}.
\end{basic_results}

\begin{examples}
\begin{example}
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

\begin{tabular}{|ll|}\hline
Classtype & variety\\\hline
Equational theory & decidable\\\hline
Quasiequational theory & \\\hline
First-order theory & \\\hline
Congruence distributive & yes\\\hline
Congruence modular & yes\\\hline
Congruence n-permutable & \\\hline
Congruence regular & \\\hline
Congruence uniform & \\\hline
Congruence extension property & \\\hline
Definable principal congruences & \\\hline
Equationally def. pr. cong. & \\\hline
Amalgamation property & yes\\\hline
Strong amalgamation property & \\\hline
Epimorphisms are surjective & \\\hline
Locally finite & \\\hline
Residual size & \\\hline
\end{tabular}
\end{properties}
\end{table}
\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$
\end{finite_members}
\hyperbaseurl{http://math.chapman.edu/structures/files/}
\parskip0pt
\begin{subclasses}\

\href{Distributive_double_p-algebras.pdf}{Distributive double p-algebras}

\end{subclasses}
\begin{superclasses}\

\href{Distributive_lattices.pdf}{Distributive lattices}

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}

\end{thebibliography}

\end{document}
%