Mathematical Structures: Boolean algebras with operators

Boolean algebras with operators

Difference (from prior author revision) (major diff, minor diff)

Changed: 1,105c1,108
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Boolean algebras with operators} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Boolean_algebras_with_operators}{edit} \abbreviation{BAO} \begin{definition} A \emph{Boolean algebra with operators} is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,f_i\ (i\inI)\rangle$ such that $\langle A,\vee,0,\wedge,1,\neg\rangle$ is a Boolean algebra $f_i$ is \emph{join-preserving} in each argument: $f_i(\ldots,x\vee y,\ldots)=f_i(\ldots,x,\ldots)\vee f_i(\ldots,y,\ldots)$ $f_i$ is \emph{normal} in each argument: $f_i(\ldots,0,\ldots)=0$ \end{definition} \begin{morphisms} Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean algebras with operators of the same signature. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a Boolean homomorphism and preserves all the operators: $h(f_i(x_0,\ldots,x_{n-1}))=f_i(h(x_0),\ldots,h(x_{n-1}))$ \end{morphisms} \begin{basic_results} \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & variety\\\hline Equational theory & decidable\\\hline Quasiequational theory & \\\hline First-order theory & undecidable\\\hline Locally finite & no\\\hline Residual size & unbounded\\\hline Congruence distributive & yes\\\hline Congruence modular & yes\\\hline Congruence n-permutable & yes, $n=2$\\\hline Congruence regular & yes\\\hline Congruence uniform & yes\\\hline Congruence extension property & yes\\\hline Definable principal congruences & no\\\hline Equationally def. pr. cong. & no\\\hline Amalgamation property & yes\\\hline Strong amalgamation property & yes\\\hline Epimorphisms are surjective & yes\\\hline \end{tabular} \end{properties} \end{table} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Modal_algebras.pdf}{Modal algebras} \href{Boolean_monoids.pdf}{Boolean monoids} \end{subclasses} \begin{superclasses}\ \href{Boolean_algebras.pdf}{Boolean algebras} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Boolean algebras with operators} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Boolean_algebras_with_operators}{edit} \abbreviation{BAO} \begin{definition} A \emph{Boolean algebra with operators} is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,f_i\ (i\in I)\rangle$ such that $\langle A,\vee,0,\wedge,1,\neg\rangle$ is a Boolean algebra $f_i$ is \emph{join-preserving} in each argument: $f_i(\ldots,x\vee y,\ldots)=f_i(\ldots,x,\ldots)\vee f_i(\ldots,y,\ldots)$ $f_i$ is \emph{normal} in each argument: $f_i(\ldots,0,\ldots)=0$ \end{definition} \begin{morphisms} Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean algebras with operators of the same signature. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a Boolean homomorphism and preserves all the operators: $h(f_i(x_0,\ldots,x_{n-1}))=f_i(h(x_0),\ldots,h(x_{n-1}))$ \end{morphisms} \begin{basic_results} \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & variety\\\hline Equational theory & decidable\\\hline Quasiequational theory & \\\hline First-order theory & undecidable\\\hline Locally finite & no\\\hline Residual size & unbounded\\\hline Congruence distributive & yes\\\hline Congruence modular & yes\\\hline Congruence n-permutable & yes, $n=2$\\\hline Congruence regular & yes\\\hline Congruence uniform & yes\\\hline Congruence extension property & yes\\\hline Definable principal congruences & no\\\hline Equationally def. pr. cong. & no\\\hline Amalgamation property & yes\\\hline Strong amalgamation property & yes\\\hline Epimorphisms are surjective & yes\\\hline \end{tabular} \end{properties} \end{table} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Modal_algebras.pdf}{Modal algebras} \href{Boolean_monoids.pdf}{Boolean monoids} \end{subclasses} \begin{superclasses}\ \href{Boolean_algebras.pdf}{Boolean algebras} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %

http://mathcs.chapman.edu/structuresold/files/Boolean_algebras_with_operators.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Boolean algebras with operators}

\abbreviation{BAO}

\begin{definition}
A \emph{Boolean algebra with operators} is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,f_i\ (i\in I)\rangle$ such that

$\langle A,\vee,0,\wedge,1,\neg\rangle$ is a Boolean algebra

$f_i$ is \emph{join-preserving} in each argument:
$f_i(\ldots,x\vee y,\ldots)=f_i(\ldots,x,\ldots)\vee f_i(\ldots,y,\ldots)$

$f_i$ is \emph{normal} in each argument:  $f_i(\ldots,0,\ldots)=0$
\end{definition}

\begin{morphisms}
Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean algebras with operators of the same signature.
A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a Boolean homomorphism and preserves all the operators:

$h(f_i(x_0,\ldots,x_{n-1}))=f_i(h(x_0),\ldots,h(x_{n-1}))$
\end{morphisms}

\begin{basic_results}
\end{basic_results}

\begin{examples}
\begin{example}
\end{example}
\end{examples}

\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

\begin{tabular}{|ll|}\hline
Classtype & variety\\\hline
Equational theory & decidable\\\hline
Quasiequational theory & \\\hline
First-order theory & undecidable\\\hline
Locally finite & no\\\hline
Residual size & unbounded\\\hline
Congruence distributive & yes\\\hline
Congruence modular & yes\\\hline
Congruence n-permutable & yes, $n=2$\\\hline
Congruence regular & yes\\\hline
Congruence uniform & yes\\\hline
Congruence extension property & yes\\\hline
Definable principal congruences & no\\\hline
Equationally def. pr. cong. & no\\\hline
Amalgamation property & yes\\\hline
Strong amalgamation property & yes\\\hline
Epimorphisms are surjective & yes\\\hline
\end{tabular}
\end{properties}
\end{table}

\hyperbaseurl{http://math.chapman.edu/structures/files/}
\parskip0pt
\begin{subclasses}\

\href{Modal_algebras.pdf}{Modal algebras}

\href{Boolean_monoids.pdf}{Boolean monoids}

\end{subclasses}

\begin{superclasses}\

\href{Boolean_algebras.pdf}{Boolean algebras}

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}

\end{thebibliography}

\end{document}
%