Mathematical Structures: Commutative residuated lattices

# Commutative residuated lattices

Difference (from prior author revision) (major diff, minor diff)

Changed: 1,122c1,120
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Commutative residuated lattices} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Commutative_residuated_lattices}{edit} \abbreviation{CRL} \begin{definition} A \emph{commutative residuated lattice} is a \href{Residuated_lattices.pdf}{Residuated lattices} $\mathbf{L}=\left\langle L,\vee ,\wedge ,\cdot ,e,\backslash ,/\right\rangle$ such that $\cdot$ is commutative: $xy=yx$ Remark: \end{definition} \begin{morphisms} Let $\mathbf{L}$ and $\mathbf{M}$ be commutative residuated lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)\ \mbox{and} h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)\$, $h(e)=e$ \end{morphisms} \begin{basic_results} \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & Variety\\\hline Equational theory & Decidable\\\hline Quasiequational theory & Undecidable\\\hline First-order theory & Undecidable\\\hline Locally finite & No\\\hline Residual size & Unbounded\\\hline Congruence distributive & Yes\\\hline Congruence modular & Yes\\\hline Congruence n-permutable & Yes, n=2\\\hline Congruence regular & No\\\hline Congruence e-regular & Yes\\\hline Congruence uniform & No\\\hline Congruence extension property & Yes\\\hline Definable principal congruences & No\\\hline Equationally def. pr. cong. & No\\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &3\\ f(4)= &16\\ f(5)= &100\\ f(6)= &794\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Commutative_distributive_residuated_lattices.pdf}{Commutative distributive residuated lattices} \href{FLe-algebras.pdf}{FLe-algebras} \end{subclasses} \begin{superclasses}\ \href{Commutative_multiplicative_lattices.pdf}{Commutative multiplicative lattices} \href{Commutative_residuated_join-semilattices.pdf}{Commutative residuated join-semilattices} \href{Commutative_residuated_meet-semilattices.pdf}{Commutative residuated meet-semilattices} \href{Residuated_lattices.pdf}{Residuated lattices} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Commutative residuated lattices} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Commutative_residuated_lattices}{edit} \abbreviation{CRL} \begin{definition} A \emph{commutative residuated lattice} is a \href{Residuated_lattices.pdf}{residuated lattice} $\mathbf{L}=\langle L, \vee, \wedge, \cdot, e, \backslash, /\rangle$ such that $\cdot$ is commutative: $xy=yx$ Remark: \end{definition} \begin{morphisms} Let $\mathbf{L}$ and $\mathbf{M}$ be commutative residuated lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, and $h(e)=e$ \end{morphisms} \begin{basic_results} \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & Variety\\\hline Equational theory & Decidable\\\hline Quasiequational theory & Undecidable\\\hline First-order theory & Undecidable\\\hline Locally finite & No\\\hline Residual size & Unbounded\\\hline Congruence distributive & Yes\\\hline Congruence modular & Yes\\\hline Congruence n-permutable & Yes, n=2\\\hline Congruence regular & No\\\hline Congruence e-regular & Yes\\\hline Congruence uniform & No\\\hline Congruence extension property & Yes\\\hline Definable principal congruences & No\\\hline Equationally def. pr. cong. & No\\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &3\\ f(4)= &16\\ f(5)= &100\\ f(6)= &794\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Commutative_distributive_residuated_lattices.pdf}{Commutative distributive residuated lattices} \href{FLe-algebras.pdf}{FLe-algebras} \end{subclasses} \begin{superclasses}\ \href{Commutative_multiplicative_lattices.pdf}{Commutative multiplicative lattices} \href{Commutative_residuated_join-semilattices.pdf}{Commutative residuated join-semilattices} \href{Commutative_residuated_meet-semilattices.pdf}{Commutative residuated meet-semilattices} \href{Residuated_lattices.pdf}{Residuated lattices} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %

http://mathcs.chapman.edu/structuresold/files/Commutative_residuated_lattices.pdf
%%run pdflatex

%


\documentclass[12pt]{amsart}
\usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref}
\parindent=0pt
\parskip=5pt
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem*{morphisms}{Morphisms}
\newtheorem*{basic_results}{Basic Results}
\newtheorem*{examples}{Examples}
\newtheorem{example}{}
\newtheorem*{properties}{Properties}
\newtheorem*{finite_members}{Finite Members}
\newtheorem*{subclasses}{Subclasses}
\newtheorem*{superclasses}{Superclasses}
\newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}}
\markboth{\today}{math.chapman.edu/structures}

\begin{document}
\textbf{\Large Commutative residuated lattices}

\abbreviation{CRL}
\begin{definition}
A \emph{commutative residuated lattice} is a \href{Residuated_lattices.pdf}{residuated lattice} $\mathbf{L}=\langle L, \vee, \wedge, \cdot, e, \backslash, /\rangle$ such that

$\cdot$ is commutative:  $xy=yx$

Remark:

\end{definition}
\begin{morphisms}
Let $\mathbf{L}$ and $\mathbf{M}$ be commutative residuated lattices. A
morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$
that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$,
$h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, and $h(e)=e$

\end{morphisms}
\begin{basic_results}
\end{basic_results}
\begin{examples}
\begin{example}
\end{example}
\end{examples}
\begin{table}[h]
\begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description})

\begin{tabular}{|ll|}\hline
Classtype & Variety\\\hline
Equational theory & Decidable\\\hline
Quasiequational theory & Undecidable\\\hline
First-order theory & Undecidable\\\hline
Locally finite & No\\\hline
Residual size & Unbounded\\\hline
Congruence distributive & Yes\\\hline
Congruence modular & Yes\\\hline
Congruence n-permutable & Yes, n=2\\\hline
Congruence regular & No\\\hline
Congruence e-regular & Yes\\\hline
Congruence uniform & No\\\hline
Congruence extension property & Yes\\\hline
Definable principal congruences & No\\\hline
Equationally def. pr. cong. & No\\\hline
Amalgamation property & \\\hline
Strong amalgamation property & \\\hline
Epimorphisms are surjective & \\\hline
\end{tabular}
\end{properties}
\end{table}
\begin{finite_members} $f(n)=$ number of members of size $n$.

$\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &3\\ f(4)= &16\\ f(5)= &100\\ f(6)= &794\\ \end{array}$
\end{finite_members}
\hyperbaseurl{http://math.chapman.edu/structures/files/}
\parskip0pt
\begin{subclasses}\

\href{Commutative_distributive_residuated_lattices.pdf}{Commutative distributive residuated lattices}

\href{FLe-algebras.pdf}{FLe-algebras}

\end{subclasses}
\begin{superclasses}\

\href{Commutative_multiplicative_lattices.pdf}{Commutative multiplicative lattices}

\href{Commutative_residuated_join-semilattices.pdf}{Commutative residuated join-semilattices}

\href{Commutative_residuated_meet-semilattices.pdf}{Commutative residuated meet-semilattices}

\href{Residuated_lattices.pdf}{Residuated lattices}

\end{superclasses}

\begin{thebibliography}{10}

\bibitem{Ln19xx}

\end{thebibliography}

\end{document}
%