Mathematical Structures: History of Algebraic semilattices

# History of Algebraic semilattices

 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Algebraic semilattices} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Algebraic_semilattices}{edit} \abbreviation{ASlat} \begin{definition} An \emph{algebraic semilattice} is a \href{Complete_semilattices.pdf}{complete semilattices} $\mathbf{P}=\langle P,\leq \rangle$ such that the set of compact elements below any element is directed and every element is the join of all compact elements below it. An element $c\in P$ is \emph{compact} if for every subset $S\subseteq P$ such that $c\le\bigvee S$, there exists a finite subset $S_0$ of $S$ such that $c\le\bigvee S_0$. The set of compact elements of $P$ is denoted by $K(P)$. \end{definition} \begin{morphisms} Let $\mathbf{P}$ and $\mathbf{Q}$ be algebraic semilattices. A morphism from $\mathbf{P}$ to $\mathbf{Q}$ is a function $f:P\rightarrow Q$ that is \emph{Scott-continuous}, which means that $f$ preserves all directed joins: $z=\bigvee D\implies f(z)= \bigvee f[D]$ \end{morphisms} \begin{basic_results} \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & second-order\\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Algebraic_lattices.pdf}{Algebraic lattices} \end{subclasses} \begin{superclasses}\ \href{Algebraic_posets.pdf}{Algebraic posets} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Algebraic semilattices} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Algebraic_semilattices}{edit} \abbreviation{ASlat} \begin{definition} An \emph{algebraic semilattice} is a \href{Complete_semilattices.pdf}{complete semilattice} $\mathbf{P}=\langle P,\leq \rangle$ such that the set of compact elements below any element is directed and every element is the join of all compact elements below it. An element $c\in P$ is \emph{compact} if for every subset $S\subseteq P$ such that $c\le\bigvee S$, there exists a finite subset $S_0$ of $S$ such that $c\le\bigvee S_0$. The set of compact elements of $P$ is denoted by $K(P)$. \end{definition} \begin{morphisms} Let $\mathbf{P}$ and $\mathbf{Q}$ be algebraic semilattices. A morphism from $\mathbf{P}$ to $\mathbf{Q}$ is a function $f:P\rightarrow Q$ that is \emph{Scott-continuous}, which means that $f$ preserves all directed joins: $z=\bigvee D\implies f(z)= \bigvee f[D]$ \end{morphisms} \begin{basic_results} \end{basic_results} \begin{examples} \begin{example} \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & second-order\\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \begin{subclasses}\ \href{Algebraic_lattices.pdf}{Algebraic lattices} \end{subclasses} \begin{superclasses}\ \href{Algebraic_posets.pdf}{Algebraic posets} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %