Mathematical Structures: History of Commutative rings

# History of Commutative rings

HomePage | RecentChanges | Login

 Revision 15 . . July 8, 2004 2:05 pm by Jipsen Revision 14 . . (edit) November 29, 2003 4:43 pm by 68.5.251.xxx

Difference (from prior major revision) (no other diffs)

Changed: 1,121c1,121
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Commutative rings} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Commutative_rings}{edit} \abbreviation{CRng} \begin{definition} A \emph{commutative ring} is a \href{Rings.pdf}{rings} $\mathbf{R}=\langle R,+,-,0,\cdot\rangle$ such that $\cdot$ is commutative: $x\cdot y=y \cdot x$ Remark: $Idl(R)=\{ all ideals of R\}$ $I$ is an ideal if $a,b\in I\implies a+b\in I$ and $\forall r \in R\ (r\cdot I\subseteq I)$ \end{definition} \begin{morphisms} Let $\mathbf{R}$ and $\mathbf{S}$ be commutative rings with identity. A morphism from $\mathbf{R}$ to $\mathbf{S}$ is a function $h:R\rightarrow S$ that is a homomorphism: $h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$ Remark: It follows that $h(0)=0$ and $h(-x)=-h(x)$. \end{morphisms} \begin{basic_results} $0$ is a zero for $\cdot$: $0\cdot x=x$ and $x\cdot 0=0$. \end{basic_results} \begin{examples} \begin{example} $\langle\mathbb{Z},+,-,0,\cdot\rangle$, the ring of integers with addition, subtraction, zero, and multiplication. \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & variety\\\hline Equational theory & decidable\\\hline Quasiequational theory & \\\hline First-order theory & undecidable\\\hline Locally finite & no\\\hline Residual size & unbounded\\\hline Congruence distributive & no\\\hline Congruence modular & yes\\\hline Congruence n-permutable & yes, $n=2$\\\hline Congruence regular & yes\\\hline Congruence uniform & yes\\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &2\\ f(3)= &2\\ f(4)= &9\\ f(5)= &2\\ f(6)= &4\\ [http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A037289 Finite commutative rings in the Encyclopedia of Integer Sequences] \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Commutative_rings_with_identity.pdf}{Commutative rings with identity} \href{Fields.pdf}{Fields} \end{subclasses} \begin{superclasses}\ \href{Rings.pdf}{Rings} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %
 %%run pdflatex % \documentclass[12pt]{amsart} \usepackage[pdfpagemode=Fullscreen,pdfstartview=FitBH]{hyperref} \parindent=0pt \parskip=5pt \addtolength{\oddsidemargin}{-.5in} \addtolength{\evensidemargin}{-.5in} \addtolength{\textwidth}{1in} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem*{morphisms}{Morphisms} \newtheorem*{basic_results}{Basic Results} \newtheorem*{examples}{Examples} \newtheorem{example}{} \newtheorem*{properties}{Properties} \newtheorem*{finite_members}{Finite Members} \newtheorem*{subclasses}{Subclasses} \newtheorem*{superclasses}{Superclasses} \newcommand{\abbreviation}[1]{\textbf{Abbreviation: #1}} \pagestyle{myheadings}\thispagestyle{myheadings} \markboth{\today}{math.chapman.edu/structures} \begin{document} \textbf{\Large Commutative rings} \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Commutative_rings}{edit} \abbreviation{CRng} \begin{definition} A \emph{commutative ring} is a \href{Rings.pdf}{rings} $\mathbf{R}=\langle R,+,-,0,\cdot\rangle$ such that $\cdot$ is commutative: $x\cdot y=y \cdot x$ Remark: $Idl(R)=\{ all ideals of R\}$ $I$ is an ideal if $a,b\in I\implies a+b\in I$ and $\forall r \in R\ (r\cdot I\subseteq I)$ \end{definition} \begin{morphisms} Let $\mathbf{R}$ and $\mathbf{S}$ be commutative rings with identity. A morphism from $\mathbf{R}$ to $\mathbf{S}$ is a function $h:R\rightarrow S$ that is a homomorphism: $h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$ Remark: It follows that $h(0)=0$ and $h(-x)=-h(x)$. \end{morphisms} \begin{basic_results} $0$ is a zero for $\cdot$: $0\cdot x=x$ and $x\cdot 0=0$. \end{basic_results} \begin{examples} \begin{example} $\langle\mathbb{Z},+,-,0,\cdot\rangle$, the ring of integers with addition, subtraction, zero, and multiplication. \end{example} \end{examples} \begin{table}[h] \begin{properties} (\href{http://math.chapman.edu/cgi-bin/structures?Properties}{description}) \begin{tabular}{|ll|}\hline Classtype & variety\\\hline Equational theory & decidable\\\hline Quasiequational theory & \\\hline First-order theory & undecidable\\\hline Locally finite & no\\\hline Residual size & unbounded\\\hline Congruence distributive & no\\\hline Congruence modular & yes\\\hline Congruence n-permutable & yes, $n=2$\\\hline Congruence regular & yes\\\hline Congruence uniform & yes\\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline Amalgamation property & \\\hline Strong amalgamation property & \\\hline Epimorphisms are surjective & \\\hline \end{tabular} \end{properties} \end{table} \begin{finite_members} $f(n)=$ number of members of size $n$. $\begin{array}{lr} f(1)= &1\\ f(2)= &2\\ f(3)= &2\\ f(4)= &9\\ f(5)= &2\\ f(6)= &4\\ [http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A037289 Finite commutative rings in the Encyclopedia of Integer Sequences] \end{array}$ \end{finite_members} \hyperbaseurl{http://math.chapman.edu/structures/files/} \parskip0pt \begin{subclasses}\ \href{Commutative_rings_with_identity.pdf}{Commutative rings with identity} \href{Fields.pdf}{Fields} \end{subclasses} \begin{superclasses}\ \href{Rings.pdf}{Rings} \end{superclasses} \begin{thebibliography}{10} \bibitem{Ln19xx} \end{thebibliography} \end{document} %

HomePage | RecentChanges | Login
Search: