Mathematical Structures: History of Goedel algebras

# History of Goedel algebras

 Revision 7 . . July 8, 2004 2:35 pm by Jipsen Revision 6 . . July 8, 2004 2:33 pm by Jipsen Revision 5 . . December 14, 2003 12:45 pm by 68.5.251.xxx

Difference (from prior major revision) (author diff)

Changed: 27,28c27,28

Changed: 30c30
 \abbreviation{GödA}
 \abbreviation{G\"odA}

Changed: 33c33
 A Gödel algebra is a \href{Heyting_algebras.pdf}{Heyting algebras} $\mathbf{A}=\langle A,\vee,0,\wedge,1,\rightarrow\rangle$ such that
 A G\"odel algebra is a \href{Heyting_algebras.pdf}{Heyting algebras} $\mathbf{A}=\langle A,\vee,0,\wedge,1,\rightarrow\rangle$ such that

Changed: 38,39c38
 Gödel algebras are also called linear Heyting algebras since subdirectly irreducible Gödel algebras are linearly ordered Heyting algebras.
 G\"odel algebras are also called linear Heyting algebras since subdirectly irreducible G\"odel algebras are linearly ordered Heyting algebras.

Changed: 43,45c42
 A Gödel algebra is a \href{Representable_FLew-algebras.pdf}{representable FLew-algebras} $\mathbf{A}=\left\langle A,\vee ,0,\wedge ,1,\cdot ,\rightarrow \right\rangle$ such that
 A G\"odel algebra is a \href{Representable_FLew-algebras.pdf}{representable FLew-algebra} $\mathbf{A}=\langle A, \vee, 0, \wedge, 1, \cdot, \rightarrow\rangle$ such that

Changed: 51c48
 Let $\mathbf{A}$ and $\mathbf{B}$ be Gödel algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a
 Let $\mathbf{A}$ and $\mathbf{B}$ be G\"odel algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a