Mathematical Structures: History of Integral relation algebras

# History of Integral relation algebras

 Revision 2 . . July 22, 2004 6:08 pm by Jipsen Revision 1 . . July 8, 2004 2:43 pm by Jipsen

Difference (from prior major revision) (no other diffs)

Changed: 28,30c28,29
 \Large Name of class \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Template}{edit} % Note: replace "Template" with Name_of_class in previous line

Changed: 32c31
 \abbreviation{Abbr}
 \abbreviation{IRA}

Changed: 35,40c34,35
 A ... is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that $\langle A,...\rangle$ is a \href{Name_of_class.pdf}{name of class} $op_1$ is (name of property): $axiom_1$
 An integral relation algebra is a \href{Relation_algebras.pdf}{relation algebra} $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,\circ,^{\smile},e\rangle$ that is

Changed: 42c37
 $op_2$ is ...: $...$
 integral: $x\circ y=0\implies x=0\mbox{ or }y=0$

Changed: 78,91c73,86
 Classtype & (value, see description) \cite{Ln19xx} \\\hline Equational theory & \\\hline Quasiequational theory & \\\hline First-order theory & \\\hline Locally finite & \\\hline Residual size & \\\hline Congruence distributive & \\\hline Congruence modular & \\\hline Congruence $n$-permutable & \\\hline Congruence regular & \\\hline Congruence uniform & \\\hline Congruence extension property & \\\hline Definable principal congruences & \\\hline Equationally def. pr. cong. & \\\hline
 Classtype & universal \\\hline Equational theory & undecidable \\\hline Quasiequational theory & undecidable \\\hline First-order theory & undecidable \\\hline Locally finite & no \\\hline Residual size & no \\\hline Congruence distributive & yes \\\hline Congruence modular & yes \\\hline Congruence $n$-permutable & yes \\\hline Congruence regular & yes \\\hline Congruence uniform & yes \\\hline Congruence extension property & yes \\\hline Definable principal congruences & no \\\hline Equationally def. pr. cong. & no \\\hline