Mathematical Structures: History of Lie algebras

History of Lie algebras

 Revision 2 . . July 26, 2004 9:12 pm by Jipsen Revision 1 . . July 9, 2004 9:02 am by Jipsen

Difference (from prior major revision) (no other diffs)

Changed: 28,30c28,29
 \Large Name of class \quad\href{http://math.chapman.edu/cgi-bin/structures?action=edit;id=Template}{edit} % Note: replace "Template" with Name_of_class in previous line

Changed: 32c31
 \abbreviation{Abbr}
 \abbreviation{LieA}

Changed: 35,38c34,35
 A ... is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that $\langle A,...\rangle$ is a \href{Name_of_class.pdf}{name of class}
 A Lie algebra is a \href{Bilinear_algebras.pdf}{bilinear algebra} $\mathbf{A}=\langle A,+,-,0,\cdot,s_r\ (r\in F)\rangle$ over a \href{Fields.pdf}{field} $\mathbf F$ such that

Changed: 40c37
 $op_1$ is (name of property): $axiom_1$
 $xx=0$ and

Changed: 42c39
 $op_2$ is ...: $...$
 $(xy)z + (yz)x + (zx)y = 0$.

Changed: 78c75
 Classtype & (value, see description) \cite{Ln19xx} \\\hline
 Classtype & variety \\\hline

Changed: 128,130c125
 \href{....pdf}{...} supervariety \href{....pdf}{...} subreduct
 \href{Bilinear_algebras.pdf}{Bilinear algebras}