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Relevance Logic 
In the late 1950’s, Alan Ross Anderson and Nuel D. Belnap started to 
develop their systems E of Entailment and R of Relevant Implication. 
Their work was inspired by Wilhelm Ackermann’s “Begrundung einer 
strengen Implikation,” The Journal of Symbolic Logic, 2:113-128. 1956. 
They translated “strenge Implikation” as “rigorous implication” to 
distinguish it from C. I. Lewis’s “strict implication” in modal logic.  The 
motivating idea was that in an implication there had to be some 
relevance between the antecedent and consequent, 
and an essential condition was the Variable Sharing Property: (VSP) A 
→ B is a theorem of E or  R only if A and B share some propositional 
variable p. 
 
Important to avoid:   (p ∧ ∼p) → q,     p → (q ∨ ∼q) 
 
 
 



Axioms and Rules of R+  
(Positive Relevant Implication) 

Axioms  
• A ! A   Self-Implication 

• (A ! B) ! [(C ! A) ! (C ! B)]   Prefixing 

• (A ! B) ! [(B! C) ! (A ! C)]    Suffixing (redundant) 

• [A ! (A ! B)] ! (A ! B)   Contraction 

• [A ! (B ! C)] ! [B ! (A ! C)]   Permutation 

• A ^ B ! A; A ^ B ! B   Conjunction Elimination 

• [(A ! B) ^ (A ! C)] ! (A ! B ^ C)   Conjunction Intro. 

• A ! A _ B; B ! A _ B   Disjunction Intro. 

• [(A ! C) ^ (B ! C)] ! (A _ B ! C)   Disjunction Elim. 

• [A ^ (B _ C)] ! [(A ^ B) _ C]   Distribution 

Rules  
• modus ponens: A; A ! B ` B 

• adjunction:  A; B ` A ^ B 

 



Axioms and Rules of E+ 
(Logic of Entailment) 

E+ is obtained by restricting Permutation axiom  
 
A ! (B ! C)] ! [B ! (A ! C)]  

 
so that B must be an implication: 
 
[A ! ((B ! B′) ! C)] ! [(B ! B′) ! (A ! C)]     
   Restricted Permutation 

  



Axioms and Rules of B+ (Basic or Minimal Relevance Logic) 

Axioms  
• A ! A   Self-Implication      

• (A ! B) ! [(C ! A) ! (C ! B)]   Prefixing 

• (A ! B) ! [(B! C) ! (A ! C)]    Suffixing (redundant) 

• [A ! (A ! B)] ! (A ! B)   Contraction 

• [A ! (B ! C)] ! [B ! (A ! C)]   Permutation 

• (A ^ B) ! A; (A ^ B )! B   Conjunction Elimination 

• [(A ! B) ^ (A ! C)] ! [A ! ( B ^ C )]   Conjunction Intro. 

• A ! (A _ B); B ! (A _ B)   Disjunction Intro. 

• [A ! C) ^ (B ! C)] ! [(A _ B ) ! C]   Disjunction Elim. 

• [A ^ (B _ C)] ! [(A ^ B) _ C]   Distribution 

Rules  
• modus ponens: A; A ! B ` B 

• adjunction:  A; B ` A ^ B 

• Prefixing: A ! B ` (C ! A) ! (C ! B) 

• Suffixing: A ! B ` (B ! C) ! (A ! C ) 

 
 

Modify R+ as indicated 



Add negation (∼) with these axioms to get  
full R or E  

1.  (A  → ∼B) → (B  → ∼A)     Contraposition 

2.  ∼∼A → A      Classical Double Negation 

3.  (A → ∼A) → ∼A     Reductio 

 
Fact: A → ∼∼A  [Constructive Double Negation] follows easily from 1. 
Substitute ∼∼A/A,   A/B. 
 

For B 
A ∨ ∼A     Excluded Middle 

∼∼A → A  Classical Double Negation 

A  → ∼B  ` B  → ∼A  Rule-form Contraposition 
 
 



The sentential constant t can be added conservatively with the 
axioms 
• t 

• t ! (A ! A).  

For R this is equivalent to: 
 A! (t ! A)  

(t ! A) ! A. 

 

This was key to the algebraization of R in my 1966 thesis . t 
corresponds to an identity element  in a “De Morgan monoid.” 
If I was being careful I would use the notation Rt but … . 

 
 
 
 

 



First algebraic treatments: 
  Nuel D. Belnap and Joel H. Spencer, “Intensionally Complemented 

Distributive Lattices,” Portugalie Mathematica, 25:99-104, 1966.  
Algebraic treatment of First Degree formulas (no nested 
implications) of the relevance logics R and E using De Morgan 
lattices with “truth filter” T that must be consistent and complete:   
a ∈ T iff »a ∉ T.  They show a De Morgan lattice has a truth filter iff 
for every element a, a ≠ »a. 
 
 J. Michael Dunn, The Algebra of Intensional Logics, Ph. D. 
dissertation, University of Pittsburgh, 1966. Parts reprinted in A. R. 
Anderson and N. D. Belnap’s Entailment, vol. 1, 1975.  Algebraic 
treatment of First Degree Entailments (FDE) A → B (no → in A or B).  
Various representations of De Morgan lattices can be given various 
semantic interpretations.  Also algebraic treatment of the whole of 
the system R using De Morgan lattice ordered commutative, square-
increasing monoids – “De Morgan monoids.”   



Relevance Logic 
Two important algebraic aspects  

In Lindenbaum algebra of R: 
 
 1.  First Degree Entailment fragment (FDE) is a  
      De Morgan lattice. 
 
  2.  Relevant implication is residuation.  
 

 



1.  De Morgan lattice 

(D, , ∧, ∨, ») is a De Morgan lattice iff  
 
    1) (D,  , ∧, ∨) is a distributive lattice, i.e.,  

a)  · is a partial order on D  
b) a ∧ b = glb {a, b} 
c) a ∨ b = lub {a, b} 
d) a ∧(b ∨ c) = (a ∧ b) ∨ (a ∧ c)    (Distribution) 
 
and 
 



 2) » is a De Morgan complement, i.e.,  
 
    a) » is a unary operation on A 
    b) »»a = a    (Period Two)    
      c) a · b implies »b · »a    (Order Inversion) 

 
Fact:    a · »b  iff  b · »a  (Galois connection) 
 
Fact:   Galois connection implies both b) and c) 

 
Fact:   »(a ∧ b) = »a ∨ »b     ( De Morgan Laws)  
        »(a ∨ b) = »a ∧ »b 

 



Antonio Monteiro (1960) used the term “De Morgan lattice” in honor 
of the 19th century British algebraic logician Augustus De Morgan. 
 
De Morgan lattices were studied earlier under a variety of names: 
 
Grigore Moisil (1935) 
Białnycki-Birula and Helena Rasiowa (1957) “quasi-Boolean algebras” 
John Kalman (1958) “distributive i-lattices” lattices with involution. 
 
Sometimes they were required to have a top element 1 and a bottom  
element 0. 



Białynicki-Birula & Rasiowa’s (1957) 
Representation  

 An Involuted Frame is a pair (U, *),  U ≠ ; ,  * : U ! U, s.t. 
for all α 2 U, α** = α  (period two, “involution”) 
Fact: * is 1-1, onto (permutation) 

 
• For X µ U, define:  X∗ = {α*: α 2 X} 
    » X = U - X ∗  
A quasi-field of sets on U is a collection Q(U) of subsets of U closed under , 

∩, ∪, » . 
Fact: Every quasi-field of sets is a De Morgan lattice. 
 
And conversely:  (Theorem) Every De Morgan lattice is isomorphic to a 

quasi-field of sets. 
 
* (not B-B and R’s g) because this is the notation in the Routley-Meyer 

semantics for relevance logic.  



2.  Implication is residuation 
 (A, ∧, ∨) is a lattice-ordered semi-group  [l-semi-group]  iff   

(A, ∧, ∨) is a lattice ,  is an associative binary operation on A, and  
a  (b ∨ c) = (a  b) ∨ (a  c) .  If it has an identity element e as well then 
it is a lattice-ordered monoid.  
Fact:  If a  c and b  d, then a  b  c  d  
An l-semi-group   is right-residuated   iff for every pair of elements a, b 
there exists an element a → b such that for all x,   
                                       a  x  b iff x   a → b.  
An l-semi-group   is left-residuated   iff for every pair of elements a, b 
there exists an element  b ← a such that for all x,  
                                      x  a  b  iff  x  b ← a. 
Note:  Residuation goes back implicitly to Dedekind, and was studied 
(among others) in the 1930’/40’s by J. Certaine, G. Birkhoff, and most 
notably by Morgan Ward and Robert P. Dilworth,  "Residuated 
lattices," Trans. Amer. Math. Soc. 45: 335-54, 1939.  
 
 

 



OK, let’s summarize.  Meet corresponds to conjunction, join to 
disjunction, De Morgan complement corresponds to negation, and 
implication corresponds to the residual. But wait … the residual of 
what?  What logical operation does  correspond to? 
 



OK, let’s summarize.  Meet corresponds to conjunction, join to 
disjunction, De Morgan complement corresponds to negation, and 
implication corresponds to the residual. But wait … the residual of 
what?  What logical operation does  correspond to? 
 
The answer, for R anyway, is it corresponds to an operation that has 
variously been called co-tenability, consistency, intensional conjunction, 
or fusion (similar to Girard’s later multiplicative conjunction in linear 
logic).  It can be defined in R as: A  B = ∼(A → ∼B). 
 
It can be conservatively added to R→ and R+. 



De Morgan Monoids 
(A, ∧, ∨, , ∼, e) is a De Morgan monoid  iff  
  1.  (A, ∧, ∨, , e)  is a distributive  lattice ordered monoid, 
  2.  a  b = b  a [commutative] 
  3.  a  a  a  [square-increasing] 
  4.  c  a  ∼b  iff  b  c  ∼a 

 
Fact.  When  is commutative, then left and right residuals coincide.  
a → b = ∼ (a  ∼b). 
 
Fact:  Set c = e, then a  ∼b  iff  c  ∼a (Galois Connection).  So we 
have Period Two and Order Inversion, i.e., a De Morgan lattice. 
 
Fact:  a ∧ b  a  b 
a ∧ b  a  and    a ∧ b  b. So a ∧ b   (a ∧ b)  (a ∧ b)   a  b 
 
 
 
  



Robert K. Meyer and Richard Routley, “Algebraic Analysis of 
Entailment 1,” Logique et Analyse, 15: 407-428, 1972.  Based on 
Robert K. Meyer’s “Conservative Extension in Relevant Implication,” Notre 
Dame Journal of Formal Logic, 31,:39-46, 1973.  
 
 
 
 

Focus is on negation-free  relevance logics. 
    Implicational Ackermann groupoid  (G, , , →, e):  p.o. groupoid, 
     e  a = a.    → is left-residual, i.e.,  a  b  c iff a  b → c.   
• Positive Ackermann groupoid (G, , →, ∧, ∨, e): Def. a  b iff a ∨ b = b. 
    (G, , , →, e) is an implicational Ackermann groupoid. (G, ∧, ∨) is a 
    distributive lattice.  distributes over join in both  directions.      
• Church monoid (C, , , →, e):  Implicational Ackermann groupoid 

where  is associative, commutative, and square increasing (a   a  a) 
• Dunn monoid (D, , →, ∧, ∨, e):  (D, , →, ∧, ∨,  e) is a positive 

Ackermann groupoid, and , is associative, commutative, square 
increasing.  Alternatively we have a distributive lattice ordered 
Church monoid. 

                  
 



• Implicational Ackermann groupoids correspond 
to the implicational fragment of B, B →.  

• Positive  Ackermann groupoids correspond to 
the positive fragment of B, B+.  

• Church monoids correspond to the implicational 
fragment of R, R→. 

• Dunn monoids correspond to positive R (no 
negation) R+. 



We do not have time to get into the detail, but Meyer and 
Routley have a long list of conditions one might impose on these 
algebraic structures so as to get a correspondence to  various 
relevance logics and their fragments (and they label these with  
corresponding combinators and the axioms they correspond to).  
E.g., for E+ take the set of positive Ackermann groupoids 
satisfying: 
 
(a  b)  c  a  (b  c)    B’       (A ! B) ! [(B ! C) ! (A ! C)]  

a  b   (a  b)  b          W        [A ! (A ! B)] ! (A ! B) 
a  a  e                          CI         (t ! A) ! A 
 
 



Another important thing is they give a correspondence between 
the conditions they list and so-called Routley-Meyer model 
structures.  These are very roughly similar to the Kripke model 
structures for modal logic except they use a ternary relation of 
accessibility in place of a binary one.  They claim that one can 
give soundness and completeness proofs for the logics relative to 
the corresponding model structures, and they illustrate this with 
B+.  This implicitly contains representation theorems for the 
various classes of algebras. 

 



Larisa Maksimova 

Maksimova wrote her 1968 Ph. D. thesis Logical Calculi of Rigorous 
Implication under Anatolij Ivanovich Mal’tsev at Novosibirsk. 
Although its intended focus was on Wilhelm Ackermann, she ended 
up citing 7 papers by Anderson and Belnap.   Her thesis was based 
on her five published papers: 
1. On a “System of Axioms of the Calculus of Rigorous Implication,” 
Algebra i Logika, 3:59-68, 1964.  
2. “Formal Deductions in the Calculus of Rigorous Implication,” Algebra i 
Logika, 5:33-39, 1966. 
3. “Some Problems of the Ackermann Calculus,” Doklady AN SSSR, 
175:1222-1224, 1967. 
4. “On Models of the Calculus E,” Algebra i Logika, 6:5-20, 1967. 
5. “On a Calculus of Rigorous Implication,” Algebra i Logika, 7:55-75, 1968.  

 



Algebraic models appear in these papers.  We focus on her slightly 
later paper “Implication Lattices,”  Algebra i Logica, 12:445-467, 
1973.  She introduces the idea of a “strimpla” (strict implication 
lattice – note that “strict” here means “rigorous”) as a structure (A, 
D, ∧,∨, →) where  (A, ∧,∨) is a distributive lattice,  D ⊆ A is a filter, 
→ a binary operation such that 
 
• x → y ∈ D  iff  x  y (defined as x = x ∧ y) 
• x ∈ D implies x → y  y 
• x  y implies y → z    x → z 
• x  y implies z → x   z → y 
• (x → y) ∧ (y → z)    x → (y ∧ z) 
• (x → z) ∧ (y → z)     (x ∨ y) → z 



She also introduces a “strimplana”  (strict implication lattice with 
negation) as a structure (A, D, ∧,∨, →, ∼), where (A, D, ∧,∨, →) is 
a strimpla and ∼ is a unary operation on A satisfying: 
• ∼ ∼a = a 
• a → ∼ b  b → ∼ a 
• a → ∼ a  ∼ a 

 
She relates her strimplas and strimplanas to a number of 
relevance logics, and gives representations of them using a 
ternary relation (she cites several of Routley and Meyer’s papers 
in which they used a ternary relation similarly in their 
completeness theorems for relevance logic). 
 
The following slide is the abstract she presented of a talk she 
gave in 1969, which contains, hidden away in algebraic code, 
arguably the first ternary relational semantics for relevance logic. 
 
  
 

 
 



L. Maksimova. “An Interpretation of Systems with Rigorous 
Implication,”   10th All-Union Algebraic Colloquium (Abstracts), 
Novosibirsk, p.113, 1969. 
 
Algebraic interpretations of models for calculi of strong implication E, R from [1] 
and SE from [2] are built. 
An E- (R-, SE-) model A= (A; D, ∪, ∩, −, →) is isomorphic to an E- (R-, SE-) system of 
open–closed [clopen] subsets of a compact topological space S with an involution  
g, a partial order ≤ and a ternary relation τ. The operations ∪ and ∩ are defined as 
set-theoretical union and intersection, respectively. X = S − { g(x) | x ∈ X }, X → Y = { 
z | (∀x y)(x ∈ X & τ(x, y, z) ⇒ y ∈ Y ) }, D is a filter on the lattice A. 
Characteristic axioms are presented for a class of systems (S; g, ≤, τ) such that (A; 
D, ∪, ∩, −, →) the system of their open–closed subsets of S is an E- (R-, SE-) model. 
1. Belnap, N. D., Intensional models for first degree formulas, Journal of Symbolic 
Logic, 32(1) (1967), 1-22. 
2. Maksimova, L. L. On the calculus of strong implication, Algebra i logika, 7(2) 
(1968), 55–76. 



“Ggl” is the acronymn for  
“generalized galois logic.” 
 
It is pronounced “gaggle.”  
 



“Gaggle,” not “giggle” 

 



    Gaggles were inspired by work of 
   Bjarni Jónsson               Alfred Tarski 

"Boolean Algebras with Operators," Part I, 
American Journal of Mathematics ,73 (1951), 891-
939, Part II, 74 (1952), 127-162.  



Some Gaggle References 
    "Gaggle Theory, an Abstraction of Galois Connections and Residuation, with 
Applications to Negation, Implication, and Various Logical Operators," in Logics in 
AI (JELIA 1990, Amsterdam), ed. J. Van Eijck, Springer Verlag, pp. 31-51, 1990. 
    "Partial-Gaggles Applied to Logics with Restricted Structural Rules," in 
Substructural Logics, eds. P. Schroeder-Heister and K. Dosen, Oxford Press, pp. 63-
108, 1993. 
    "Gaggle Theory Applied to Modal, Intuitionistic, and Relevance Logics," in Logik  
und Mathematik: Frege-Kolloquium Jena, eds. I. Max and W. Stelzner, de Gruyter, 
pp. 335-368, 1995. 
     Algebraic Methods in Philosophical Logic (with G.  Hardgree),  Oxford              
University Press, 2001. 
     “Symmetric Generalized Galois Logics” (with Katalin Bimbó), Logica 
Universalis, vol. 3, pp. 125-153, 2009. 
     Generalized Galois Logics.  Relational Semantics of Nonclassical Logical Calculi 
(with K. Bimbó), CSLI Lecture Notes, University of Chicago Press, 2008. 
  
 



Primer on Gaggle Theory 
 Consider a poset   D =(D, ·) that  is a distributive lattice, with  

unary operations f and g    f: P   P   g: P    P.  
 
We require “abstract residuation”, i.e., one of  
  
• p · fq  iff   q · gp    (galois connection) 
 
• fq ·   p iff  gp · q     (dual galois connection)  
 p ¸ fq         q ¸ gp 
 
• fq ·  p  iff   q · gp   (residuation or adjunction) 
 p ¸ fq 
 
• p · fq  iff  gp · q    (dual residuation) 
                           q ¸ gp 



     It is easy to show that each of these pairs has a  “distribution 
type (distributes or co-distributes over meet or join).  Note for 
each pair the output is uniformly a meet, or else a join. 

 
Residuation:            f(a ∨  b)  =   f(a) ∧  f(b)  
                                  g(a ∧  b)  =  g(a) ∧ g(b)  
  
Galois connection:   f(a ∧  b)  =  f (a) ∨ f(b)  
                                    g(a ∧  b) =  g(a) ∨ g(b)  
 
Dual Galois conn.:   f(a ∨  b)  =   f(a) ∧  f(b) 
                                   g(a ∨  b)  =  g(a) ∧  g(b)  
 
Dual Residuation:   f(a ∧  b)  =  f(a) ∨  f(b)  
                                  g(a ∨  b)  =  g(a) ∨ g(b)  
 
 
  

  
 
 
           



Consider a binary case, a residuated groupoid (S, ≤ ±, ← , → ): 
 a ≤ c ← b  iff  a ∘ b ≤ c  iff  b ≤ a → c 
 
It is part of the definition that ± distributes over join in each argument. It can 
be proven that: 
  
  (x ∨ y) → z = (x → z) ∧ (y → z)   co-distributes 
 
 x → (y ∧ z) = (x → y) ∧ (x → z)   distributes 
 
Symmetrically for  ←. 
 
 So distr. types.          ±:  (1, 1)  1  
       ←:  (1, 0)  0  
       →:  (0, 1)  0  
Note bene:  again these are all contrapositives of  each other. 
 
 
 



How to state “abstract residuation” abstractly? 
 
 Start with “Distribution Types”. Use 1 in place of join ∨, and 0 in place 

of meet ∧, and view them as complements. 
 
(Note that if we are dealing with only an  underlying poset, we can 
add top  and bottom ⊥, and then we get the concept of a trace, 
where 1 is in place of bottom -- ⊥,  and 0 in place of top -- ) 

 
1. Residuation implies that  f  distributes over join and g over meet, 

i.e., f has “distribution type” 1  1, and g has type 0  1. 
2. Galois connection implies both f and g have distr. type 0  1. 
3. Dual galois conn. implies both f and g have distr. type 1  0. 
4. Dual residuation implies f  has “distribution type” 0  0, and g  

has type 1  0. 
 

Note that in each case  f  and  g  “contrapose” with each other. 
 

 
 



 
   A distributoid is a distributive lattice with 
   operations  that either distribute or co-

distribute in each of their places. 



 
Two operators f and g satisfy the Abstract Law of Residuation 
(in their i-th place) when f and g are “contrapositives”  
(with respect  to their i-th place) and 
 
 f(a1, …, ,ai, …, an) · b  iff  g(a1, … , b, ..., an) · ai 
 
 
 
 
 
 



Thank you! 



Approximately 1965 

Nuel Belnap 
Michael Dunn 
Robert Meyer 

Pittsburgh 

Larisa  Maksimova   
Novosibirsk 

Richard Routley 
     Canberra 
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