The Geometry of Relevant Implication

Alasdair Urquhart

University of Toronto

October 2016

The Logic KR

KR results by adding *ex falso quodlibet* to **R**, that is, the axiom scheme $(A \land \neg A) \to B$. Surprisingly, this does not cause a collapse into classical logic – far from it! We get the model theory for **KR** from the ternary relational semantics for **R** by adding the postulate $x^* = x$, so that the truth condition for negation is classical:

$$x \models \neg A \Leftrightarrow x \not\models A$$
.

The condition $x^* = x$ has a notable effect on the ternary accessibility relation. The postulates for an **R** model structure include the following implication:

$$Rxyz \Rightarrow (Ryxz \& Rxz^*y^*).$$

The result of the identification of x and x^* is that the ternary relation in a **KR** model structure (KRms) is *totally symmetric*.

In detail, a KRms $\mathcal{K} = \langle S, R, 0 \rangle$ is a 3-place relation R on a set containing a distinguished element 0, and satisfying the postulates:

- Raaa;
- **3** $Rabc \Rightarrow (Rbac \& Racb)$ (total symmetry);
- (Rabc & Rcde) $\Rightarrow \exists f(Radf \& Rfbe)$ (Pasch's postulate).

A Puzzling Question: How to construct such weird models?

Answer: Projective Geometry!

Projective Spaces

Definition

Let A be a set and L a collection of subsets of A. We call the members of A points and those of L lines. For $p, q \in A$, $p \neq q$, let p + q denote the unique line containing p and q; if p = q, set $p + q = \{p\}$. The pair $\langle A, L \rangle$ is a projective space iff the following properties hold:

- If p and q are two points, then there is exactly one line on both p and q.
- 2 If L is a line, then there are at least three points on L.
- If a, b, d, e are four points such that the lines a + b and d + e meet, then lines a + d and b + e also meet.

Apart from degenerate cases, the Pasch Postulate states that if a line b+e intersects two sides, a+c and c+d of the triangle $\{a,c,d\}$, then it intersects the third side, a+d.

Figure: The Pasch Postulate

Constructing Frames from Geometries

Definition

Let $S = \langle \mathcal{P}, \mathcal{L}, I \rangle$ be a projective space and 0 an element distinct from all the points in \mathcal{P} . Then Frame(S) is defined to be the relational structure $\langle S, R, 0 \rangle$, where $S = \mathcal{P} \cup \{0\}$, and R is the smallest totally symmetric three-place relation satisfying the conditions:

- R0aa for all $a \in P$;
- **2** Raaa for all $a \in S$;
- 3 Rabc where a, b, c are three distinct collinear points

Theorem

Let S be a projective space in which there are at least four points on every line. Then Frame(S) is a KR-frame.

The Algebra of **KR**

Given a **KR** model structure $\mathcal{K} = \langle S, R, 0 \rangle$, we can define an algebra $\mathfrak{A}(\mathcal{K})$ as follows:

Definition

The algebra $\mathfrak{A}(\mathcal{K}) = \langle \mathcal{P}(S), \cap, \cup, \neg, \top, \bot, t, \circ \rangle$ is defined on the Boolean algebra $\langle \mathcal{P}(S), \cap, \cup, \neg, \top, \bot \rangle$ of all subsets of S, where $\top = S, \bot = \emptyset, t = \{0\}$, and the operator $A \circ B$ is defined by

$$A \circ B = \{c \mid \exists a \in A, b \in B(Rabc)\}.$$

The algebra $\mathfrak{A}(\mathcal{K})$ is a De Morgan monoid in which $A \cap \neg A = \bot$. Hence the fusion operator $A \circ B$ is associative, commutative, and monotone. In addition, it satisfies the square-increasing property, and t is the monoid identity:

Constructing Geometries from Frames

Definition

Let $\mathcal{K}=\langle S,R,0\rangle$ be a **KR** model structure. The family $\mathcal{L}(\mathcal{K})$ is defined to be the elements of $\mathfrak{A}(\mathcal{K})$ that are $\geq t$ and idempotent, that is to say, $A\in\mathcal{L}(\mathcal{K})$ if and only if $A\circ A=A$ and $t\leq A$.

If $K = \langle S, R, 0 \rangle$ is a **KR** model structure, then a subset *A* of *S* is a *linear* subspace if it satisfies the condition

$$(a, b \in A \land Rabc) \Rightarrow c \in A.$$

A lattice is modular if it satisfies the implication

$$x \ge z \Rightarrow x \land (y \lor z) = (x \land y) \lor z.$$

Theorem

If $K = \langle S, R, 0 \rangle$ is a **KR** model structure, then:

- The elements of $\mathcal{L}(\mathcal{K})$ are the non-empty linear subspaces of \mathcal{K} ;
- **2** $\mathcal{L}(\mathcal{K})$, ordered by containment, forms a modular lattice, with least element t, and the lattice operations of join and meet defined by $A \wedge B = A \cap B$ and $A \vee B = A \circ B$.

If $S = \langle \mathcal{P}, \mathcal{L}, I \rangle$ is a projective space, a subset X of \mathcal{P} is a linear subspace if $a, b \in X \Rightarrow a + b \subseteq X$. If Frame(S) is the frame constructed from S, then $\mathcal{L}(K)$ is isomorphic to the lattice of linear subsets of S because a set of points X is a linear subset of S if and only if $S = \{0\}$ is a linear subset of $S = \{0\}$.

Figure: Multiplication on a line in real projective space

If we assume Desargues's law, then the geometrical multiplication defined in this way is associative.

In a two-dimensional projective space, however, we cannot assume the Desargues law in general, because of the existence of non-Arguesian projective planes. If we add a third dimension to our coordinate frame, however, then we can prove enough of Desargues's law to prove associativity of $x \cdot y$ with appropriate assumptions. This is the construction that proves undecidability for a wide family of relevance logics.

Figure: A 4-frame in real projective space

If L is a lattice with least element 0, then $a \in L$ is an atom if h(a) = 1. An element a of a complete lattice L is compact if and only if $a \le \bigvee X$ for some $X \subseteq L$ implies that $a \le \bigvee Y$ for some finite $Y \subseteq X$.

Definition

A lattice L is a modular geometric lattice iff L is complete, every element of L is a join of atoms, all atoms are compact, and L is modular.

A subset X of the set of atoms of a projective space is a *linear subspace* iff $p+q\subseteq X$ whenever $p,q\in X$.

Theorem

The linear subspaces of a projective space form a modular geometric lattice, where $A \wedge B = A \cap B$ and

$$A \vee B = \bigcup \{a + b \mid a \in A, b \in B\}.$$

The projective space construction can only represent modular geometric lattices. What is worse, it does not even cover all projective spaces, since projective spaces based on the two-element field are not included. For example, the Fano plane is not representable in this way.

Figure: The Fano Plane

Figure: The free modular lattice on 3 generators

More generally, which modular lattices are representable in KR frames?

A New Construction

Definition

Let L be a modular lattice with least element 0. Define a ternary relation R on the elements of L by:

$$Rabc \Leftrightarrow a \lor b = b \lor c = a \lor c$$

and let $\mathcal{K}(L)$ be $\langle L, R, 0 \rangle$.

Theorem

 $\mathcal{K}(L)$ is a **KR** model structure.

Definition

If L is a lattice, then an *ideal* of L is a non-empty subset I of L such that

- If $a, b \in I$ then $a \lor b \in I$;
- ② If $b \in I$ and $a \leq b$, then $a \in I$.

Theorem

Let L be a modular lattice with least element 0 , and $\mathcal{K}(L) = \langle L, R, 0 \rangle$ the KR model structure constructed from L. Then $\mathcal{L}(\mathcal{K}(L))$ is identical with the lattice of ideals of L.

Corollary

Any modular lattice of finite height (hence any finite modular lattice) is representable as $\mathcal{L}(\mathcal{K})$ for some **KR** model structure \mathcal{K} . In addition, any modular lattice is representable as a sublattice of $\mathcal{L}(\mathcal{K})$ for some **KR** model structure \mathcal{K} .

Problem

Can we use this construction to refute Beth's theorem for the logic KR?

Idea: Adapt Ralph Freese's 1979 proof that modular lattice epimorphisms need not be onto.

