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Abstract

This paper is a continuation of earlier work by the author on the connection
between the logic KR and projective geometry. It contains a simplified con-
struction of KR model structures; as a consequence, it extends the previous
results to a much more extensive class of projective spaces and the correspond-
ing modular lattices.

1 The Logic KR
The logic KR occupies a rather unusual place in the family of relevant logics. In
fact, it is questionable whether it should even be classified as a relevant logic, since it
is the result of adding to R the axiom ex falso quodlibet, that is to say, (A∧¬A)→B.
This is of course one of the paradoxes of material implication that relevant logics
were devised specifically to avoid, a paradox of consistency. The other type of
paradox is a paradox of relevance, of which the paradigm case is the weakening
axiom A→ (B→ A). The surprising thing about KR is that although it contains
the first type of paradox, it avoids the second, contrary to what we might at first
suspect. In fact, it is a complex and highly non-trivial system. The credit for
its initial investigation belongs to Adrian Abraham, Robert K. Meyer and Richard
Routley [12].

The model theory for KR is elegantly simple. The usual ternary relational
semantics for R includes an operation ∗ designed to deal with the truth condition
for negation

x |= ¬A⇔ x∗ 6|= A.

The effect of adding ex falso quodlibet to R is to identify x and x∗; this in turn has
a notable effect on the ternary accessibility relation. The postulates for an R model
structure include the following implication:

Rxyz ⇒ (Ryxz & Rxz∗y∗).
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The result of the identification of x and x∗ is that the ternary relation in a KR
model structure (KRms) is totally symmetric. In detail, a KRms K = 〈S, R, 0〉 is a
3-place relation R on a set containing a distinguished element 0, and satisfying the
postulates:

1. R0ab⇔ a = b;

2. Raaa;

3. Rabc⇒ (Rbac & Racb) (total symmetry);

4. (Rabc & Rcde)⇒ ∃f(Radf & Rfbe) (Pasch’s postulate).

The result of adding the weakening axiom A→ (B→ A) to R is a collapse into
classical logic. The addition of (A ∧ ¬A)→ B does not result in such a collapse –
but is the result a trivial or uninteresting system? This is very far from the case, as
we shall see in the next section.

2 KR and modular lattices

Given aKRmodel structure K = 〈S, R, 0〉, we can define an algebra A(K) as follows:

Definition 2.1. The algebra A(K) = 〈P(S),∩,∪,¬,>,⊥, t, ◦〉 is defined on the
Boolean algebra 〈P(S),∩,∪,¬,>,⊥〉 of all subsets of S, where > = S,⊥ = ∅, t =
{0}, and the operator A ◦B is defined by

A ◦B = {c | ∃a ∈ A, b ∈ B(Rabc)}.

The algebra A(K) is a De Morgan monoid [1],[3] in which A∩¬A = ⊥; we shall
call any such algebra a KR-algebra. Hence the fusion operator A ◦B is associative,
commutative, and monotone. In addition, it satisfies the square-increasing property,
and t is the monoid identity:

A ◦ (B ◦ C) = (A ◦B) ◦ C,

A ◦B = B ◦A,

(A ⊆ B ∧ C ⊆ D)⇒ A ◦ C ⊆ B ◦D,

A ⊆ A ◦A,

A ◦ t = A.
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In what follows, we shall assume basic results from the theory of De Morgan monoids,
referring the reader to the expositions in Anderson and Belnap [1] and Dunn and
Restall [3] for more background.

In a KR-algebra, we can single out a subset of the elements that form a lattice;
this lattice plays a key role in the analysis of the logic KR.

Definition 2.2. Let A be a KR-algebra. The family L(A) is defined to be the
elements of A that are ≥ t and idempotent, that is to say, a ∈ L(A) if and only
if a ◦ a = a and t ≤ a. If K is a KR model structure, then we define L(K) to be
L(A(K)).

The following lemma provides a useful characterization of the elements of L(A);
it is based on some old observations of Bob Meyer.

Lemma 2.3. Let A be a KR-algebra. Then the following conditions are equivalent:

1. a ∈ L(A);

2. a = (a→ a);

3. ∃b[a = (b→ b)].

Proof. (1⇒ 2⇒ 3): Since t ≤ a, we have t ≤ (a→ a)→ a, t ◦ (a→ a) ≤ a, hence
(a→ a) ≤ a. Since a ◦ a ≤ a, a ≤ (a→ a), so a = (a→ a), proving the second and
hence the third condition.

(3⇒ 1): First, we have t ≤ (b→ b) = a. Second, (b→ b) ≤ (b→ b)→ (b→ b), so
(b→ b) ◦ (b→ b) ≤ (b→ b), that is to say, a ◦ a ≤ a, so a ◦ a = a.

If K = 〈S, R, 0〉 is aKRmodel structure, then a subset A of S is a linear subspace
if it satisfies the condition

(a, b ∈ A ∧Rabc)⇒ c ∈ A.

A lattice is modular if it satisfies the implication

x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z.

For background on modular lattice theory, the reader can consult the texts of
Birkhoff [2] or Grätzer [6].

We require a few basic lattice-theoretic definitions here. A chain in a lattice L
is a totally ordered subset of L; the length of a finite chain C is |C| − 1. A chain
C in a lattice L is maximal if for any chain D in L, if C ⊆ D then C = D. If L is
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a lattice, a, b ∈ L and a ≤ b, then the interval [a, b] is defined to be the sublattice
{c : a ≤ c ≤ b}.

Let L be a lattice with least element 0. We define the height function: for a ∈ L,
let h(a) denote the length of a longest maximal chain in [0, a] if there is a finite
longest maximal chain; otherwise put h(a) = ∞. If L has a largest element 1, and
h(1) <∞, then L has finite height.

Let L be a modular lattice with 0 of finite height. Then for a ∈ L, h(a) is the
length of any maximal chain in [0, a]. In addition, the height function in L satisfies
the condition

h(a) + h(b) = h(a ∧ b) + h(a ∨ b),

for all a, b ∈ L. For a lattice of finite height, this last condition is equivalent to
modularity. These results are proved in the text of Grätzer [6, Chapter IV, §2].

Lemma 2.4. If K is a KR model structure, then the elements of L(K) are exactly
the non-empty linear subspaces of K.

Proof. The lemma follows from the definition of A ◦B and the fact that Raa0 and
Raaa hold in any KR model structure.

Theorem 2.5. If A is a KR-algebra, then L(K), ordered by containment, forms
a modular lattice, with least element t, and the lattice operations of join and meet
defined by a ∧ b and a ◦ b.

Proof. The fact that L(K) forms a lattice, with ∧ as the lattice meet and ◦ as the
lattice join, can be proved from the basic properties of De Morgan lattices.

We now prove modularity; in the following computation, we use juxtaposition ab
for meet a∧ b, and a for the Boolean complement. Note that a∨ b is the extensional
(Boolean) join, not the lattice join in L(K). If a ≥ c, then

a(b ◦ c) = a[(ba ∨ ba) ◦ c]
= a[(ba ◦ c) ∨ (ba ◦ c)]
≤ a[(ba ◦ c) ∨ (a ◦ a)]
= a(ba ◦ c) ∨ aa

≤ ab ◦ c.

The opposite inequality ab ◦ c ≤ a(b ◦ c) follows from the lattice properties of L(K),
so a(b ◦ c) = ab ◦ c. In the fourth line above, the equation a ◦ a = a follows from
Lemma 2.3, since for a ∈ L(K), a = a→ a, so a = a→ a = a ◦ a.

The preceding theorem shows that there is a modular lattice canonically asso-
ciated with any KR-algebra. It is natural to ask the question: how general is this
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Figure 1: N5: the five-element non-modular lattice

construction? That is to say, which modular lattices arise in this way? In earlier pa-
pers [13],[14],[15] I provided a partial answer to this question by showing that a very
large family of modular lattices, closely connected with classical projective geome-
tries, can be represented as the lattices L(K) associated with KR model structures.
This construction made possible the solution of some long-standing problems in the
area of relevance logic, particularly those of decidability and interpolability.

The lattices arising from projective spaces, however, are of a rather special type,
and the construction given in my earlier work does not make clear whether more
general modular lattices can be represented. In this section, I give a very simple
construction for KR model structures showing that any modular lattice can be
represented as a sublattice of a lattice L(K). The earlier representation of geometric
lattices can be obtained as a direct corollary of this construction, as is shown in
Section 4.

Definition 2.6. Let L be a lattice with least element 0. Define a ternary relation
R on the elements of L by:

Rabc⇔ a ∨ b = b ∨ c = a ∨ c,

and let K(L) be 〈L, R, 0〉.

Theorem 2.7. K(L) is a KR model structure if and only if L is modular.

Proof. The first three postulates for a KR model structure follow immediately
from the definition of R, using only the fact that L is a lattice. Now assume that
L is modular; we need to verify the last postulate (the Pasch postulate). Assume
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that Rabc and Rcde, that is to say, a ∨ b = b ∨ c = a ∨ c and c ∨ d = c ∨ e = d ∨ e.
Define f = (a ∨ d) ∧ (b ∨ e). We need to show that Radf and Rfbe, that is to say,
a ∨ f = a ∨ d = d ∨ f and b ∨ f = b ∨ e = e ∨ f . We compute

a ∨ f = a ∨ [(a ∨ d) ∧ (b ∨ e)] (1)
= (a ∨ d) ∧ (a ∨ b ∨ e) (2)
= (a ∨ d) ∧ (a ∨ c ∨ e) (3)
= (a ∨ d) ∧ (a ∨ c ∨ d) (4)
= a ∨ d, (5)

where the equality (2) follows by modularity. The remaining three equalities follow
by an exactly symmetrical argument.

For the converse implication, assume that the Pasch postulate holds, but L is not
modular. Then L has a sublattice isomorphic to N5, the five-element nonmodular
lattice (see Figure 1). In N5, we have R(a, c, a∨c) and (b∨c, b, c). Since a∨c = b∨c,
it follows by the Pasch postulate that there is an f so that R(a, b, f) and R(f, c, c).
Then f ≤ a ∨ f = a ∨ b = a, and f ≤ f ∨ c = c ∨ c = c, so f ≤ a ∧ c. Thus
b∨ f ≤ b∨ (a∧ c); hence a ≤ a∨ b = b∨ f ≤ b∨ (a∧ c) = b, contradicting a > b.

Definition 2.8. If L is a lattice, then an ideal of L is a non-empty subset I of L
such that

1. If a, b ∈ I then a ∨ b ∈ I;

2. If b ∈ I and a ≤ b, then a ∈ I.

The family of ideals of a lattice L, ordered by containment, forms a complete
lattice I(L). The original lattice L is embedded in I(L) by mapping an element
a ∈ L into the principal ideal containing a, (a] = {b | b ≤ a}. It is easy to verify that
the mapping a 7−→ (a] is a lattice isomorphism between L and a sublattice of I(L).

Theorem 2.9. Let L be a modular lattice with least element 0, and K(L) = 〈L, R, 0〉
the KR model structure constructed from L. Then L(K(L)) is identical with the
lattice of ideals of L.

Proof. We need to show that the non-empty linear subspaces of K(L) are exactly
the ideals of L. Let S ⊆ L be a non-empty linear subspace of L. If a, b ∈ S, and
a∨b = c, then Rabc, so c ∈ S. If a ≤ b and b ∈ S, then Rbba, so that a ∈ S, showing
that S is an ideal. Conversely, assume that S is an ideal of L. By definition, S is
non-empty. If a, b ∈ S and Rabc, then a∨b = a∨c ∈ S, so c ∈ S, since c ≤ a∨c.
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Corollary 2.10. Any modular lattice of finite height (hence any finite modular
lattice) is representable as L(K) for some KR model structure K. In addition, any
modular lattice is representable as a sublattice of L(K) for some KR model structure
K.

The preceding theorem and corollary constitute a general representation theory
for modular lattices. Faigle and Herrmann [4] provided a related representation
theorem for modular lattices of finite height. They define a set of axioms for a
projective geometry as an incidence structure on partially ordered sets of “points”
and “lines,” and show that every modular lattice of finite length is isomorphic to
the lattice of linear subsets of some finite-dimensional projective geometry.

3 Anticipations of the main construction
The construction of Definition 2.6 is very simple and natural, and it is not surprising
that it has occurred earlier in the mathematical literature. In a paper of 1959 [8,
p. 463], Bjarni Jónsson asked whether every modular lattic is isomorphic to a lat-
tice of commuting equivalence elements of some relation algebra. His question was
answered affirmatively by Roger Maddux in a paper published in 1981 [10]. The
construction that he used to answer Jónsson’s question is the same as that of Defi-
nition 2.6; his paper also contains a version of Theorem 2.9. Maddux’s monograph
on relation algebras also describes the construction [11, pp. 501-502].

A surprising anticipation of Maddux’s construction can be found in a paper by
D.K. Harrison [7] published in 1979. Harrison defines a Pasch geometry (also known
as a multigroup) to be a set A with a distinguished element e and a ternary relation
∆ defined on A satisfying four postulates. His first postulate is:

For each a ∈ A there exists a unique b ∈ A with (a, b, e) ∈ ∆; denote b
by a#.

In Harrison’s terminology, a KR model structure is a Pasch geometry in which
a# = a for all a ∈ A. Proposition 8 of his paper shows that if the construction
of Definition 2.6 is applied to a lattice L with least element e, then the resulting
structure (L, ∆, e) is a Pasch geometry if and only if L is modular. The second part
of Theorem 2.7 above is adapted from Harrison’s proof of his Proposition 8.

4 KR and projective spaces
In an earlier paper [13], I showed that there is a close connection between KR
and projective geometry. More precisely, I proved that every lattice arising from
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Figure 2: The Pasch Postulate

a broad class of projective spaces can be represented as L(K) for some KR model
structure K. The proof proceeded by a direct construction of a model structure from
a projective space; the construction is essentially the same as that given earlier by
Roger C. Lyndon [9] to produce examples of non-representable relation algebras. In
the 1983 paper [13], the construction is only sketched; my paper on interpolation
from 1993 [15] contains a full exposition.

The present section gives a new proof of the earlier results, based on Theorems
2.7 and 2.9. Before giving the proof, we need some definitions and results relating
to projective spaces and the lattices that arise from them; they are adapted from
the text of Grätzer [6, Chapter IV, §5].

Definition 4.1. Let A be a set and L a collection of subsets of A. The pair 〈A, L〉
is a projective space iff the following properties hold:

1. Every l ∈ L has at least two elements;

2. For any two distinct p, q ∈ A, there is exactly one l ∈ L so that p, q ∈ l;

3. Pasch Postulate: For a, b, c, d, e ∈ A and l1, l2 ∈ L satisfying a, b, c ∈ l1 and
c, d, e ∈ l2, there exist f ∈ A and l3, l4 ∈ L satisfying a, d, f ∈ l3 and b, e, f ∈ l4.

We call the members of A points and those of L lines. For p, q ∈ A, p 6= q, let
p + q denote the unique line containing p and q; if p = q, set p + q = {p}. Apart
from degenerate cases, the Pasch Postulate states that if a line b + e intersects two
sides, a + c and c + d of the triangle {a, c, d}, then it intersects the third side, a + d;
see Figure 2.
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If L is a lattice with least element 0, then a ∈ L is an atom if h(a) = 1. An
element a of a complete lattice L is compact if and only if a ≤

∨
X for some X ⊆ L

implies that a ≤
∨

Y for some finite Y ⊆ X.

Definition 4.2. A lattice L is a modular geometric lattice iff L is complete, every
element of L is a join of atoms, all atoms are compact, and L is modular.

A subset X of the set of atoms of a projective space is a linear subspace iff
p + q ⊆ X whenever p, q ∈ X.

Theorem 4.3. The linear subspaces of a projective space form a modular geometric
lattice, where A ∧B = A ∩B and

A ∨B =
⋃
{a + b | a ∈ A, b ∈ B}.

Proof. See Grätzer [6, Chapter IV, §5, Theorem 5].

The construction of a modular geometric lattice from a projective space can be
reversed. Given such a lattice L, define a geometry G(L) by defining the points to
be the set of atoms of L, while the lines are the elements of L with height 2.

Theorem 4.4. If L is a modular geometric lattice, then G(L) is a projective space,
and L is isomorphic to the lattice of linear subspaces of G(L).

Proof. See Grätzer [6, Chapter IV, §5].

The two preceding theorems show that there is an exact correspondence between
projective spaces and modular geometric lattices.

Lemma 4.5. Let L be a modular geometric lattice. Then the set F of elements of
L of finite height is an ideal of L, and every element of F is a finite join of atoms.
L is isomorphic to I(F ), the lattice of all ideals of F .

Proof. See Grätzer [6, Corollary 2, p. 179].

Theorem 4.6. Let L be a modular geometric lattice. Then L is isomorphic to L(K),
for some KR model structure K.

Proof. Let F be the family of elements of L of finite height. Then F forms a
modular lattice, so we can construct a KR model structure K(F ) by Definition 2.6.
By Theorem 2.9 and Lemma 4.5, L is isomorphic to L(K(F )).

The preceding theorem includes the results of [13], but in fact goes further,
because the earlier results omitted certain projective spaces and the corresponding
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Figure 3: The Fano Plane

geometries. In particular, the construction ofKRmodel structures in my 1984 paper
required that the underlying projective spaces have at least four points on each line
(the construction of Lyndon [9] has the same restriction). This restriction means
that the important special case of geometries constructed from the two-element field
are not represented. In particular, the best known example of a finite geometry, the
Fano plane (Figure 3), is not included in the family of lattices represented in the
construction of [13]. The present construction is not only much simpler, but includes
these geometries in its scope.

Roger Maddux has reminded me of the fact that Lyndon does treat the case
of geometries over the two-element field, though only as an aside [9, p. 24]. The
difficulty in the case of the two-element field arises from contraction. If we assume
the second postulate in the definition of a KR model structure, Raaa, then there
are not enough points on a line to validate the Pasch postulate. If we omit this
postulate, though, we can construct models for contraction-free logics, following
Lyndon’s method.

5 An application, a problem and acknowledgments

The simple construction of this paper indicates that further results about KR and
other relevant logics can very likely be obtained by adapting ideas from the well
developed and deep theory of modular lattices. As a minor application illustrating
these possibilities, we show that if A(G) is aKR-algebra freely generated by G, then
there is a set G∗ ⊆ L(A(G)) so that G∗ freely generates a sublattice of L(A(G)).
No doubt other such applications can be found, and we include as an open problem
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another possible use for the construction.

Theorem 5.1. Let A be a KR-algebra, and G a subset that freely generates A. If
G∗ = {a→ a : a ∈ G}, then G∗ freely generates a sublattice of L(A).

Proof. Let L be the sublattice of L(A) generated by G∗. If M is a modular lattice
with least element 0, and f : G∗ 7−→ M a function from G∗ to M , then we need to
show that f can be extended to a lattice homomorphism from L to M .

Using Definition 2.6, we can define theKR model structure K(M), and hence by
Definition 2.1, the KR-algebra B = A(K(M)). For a ∈ G, define g(a) = f(a→ a).
Since G freely generates A, g can be extended to a homomorphism h from A to
B. By Theorem 2.9, L(B) is identical with the lattice of ideals of M , so that we
can identify M with a sublattice of L(B) by the embedding a 
 (a] that maps an
element a ∈M into the principal ideal generated by a.

For a ∈ G∗, let a = b→ b, for b ∈ G. Then

h(a) = h(b→ b) = h(b)→ h(b) = g(b)→ g(b)

= f(b→ b)→ f(b→ b) = f(a)→ f(a) = f(a).

Thus, h restricted to L is a lattice homomorphism from L to M extending f , showing
that G∗ freely generates L.

Corollary 5.2. In the logic KR, there are infinitely many distinct formulas built
from the formulas p→ p, q→ q, r→ r and s→ s using only the connectives ∧ and ◦.

Proof. Theorem 5.1 shows that the formulas p→ p, q→ q, r→ r and s→ s generate
an algebra of formulas isomorphic to the free modular lattice on four generators.
This algebra is infinite [2, p. 64].

Beth’s theorem equating implicit and explicit definability is known to fail in
many of the well known relevant logics such as R. However, the proof of this result
[16] depends on the fact that classical Boolean negation is missing from these logics,
and so does not apply to KR.

Problem 5.3. Does Beth’s definability theorem hold in the logic KR?

The construction of this paper suggests a way to attack this problem. The
algebraic counterpart of the Beth definability theorem in a variety of algebras is
the property that epimorphisms are surjective. Ralph Freese [5, Theorem 3.3] has
shown that this property fails in the category of modular lattices and lattice homo-
morphisms. Consequently, a possible strategy to attack this problem would be to
adapt Freese’s proof to the algebra of KR.
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This paper was presented at a special session on algebraic logic (organized by
Nick Galatos and Peter Jipsen) at the regional meeting of the ASM in Denver, Octo-
ber 2016. At my talk, Roger Maddux told me of his earlier work on the construction
of §2; I am indebted to him for his comments on this paper, and for providing the
list of references in §3.
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