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Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



Definition

I Definition
A lattice-ordered pregroup, or just `-pregroup, is a structure of the
form 〈L, ·, 1, l , r ,∨,∧, 〉, where

I 〈L, ·, 1〉 is a monoid,
I 〈L,∨,∧〉 is a lattice,
I multiplication on either side preserves order,
I and x lx ≤ 1 ≤ xx l and xx r ≤ 1 ≤ x rx .

I Alternatively, L is a residuated lattice such that x lr = x = x rl

and (xy)l = y lx l .

I An `-pregroup is distributive if it is distributive as a lattice.

I The variety of distributive `-pregroups has the variety of
`-groups as an important subvariety. It is picked out by the
equation x l = x r .

I The elements which satisfy the foregoing equation form an
`-group inside any `-pregroup.



The fat question: are all `-pregroups distributive?
I A modular `-pregroup is distributive. This fact first came to

light as the result of a two-month run on an automated
theorem prover. Peter has reduced this proof to a single page.
Nevertheless, the proof remains opaque.

I Is an `-pregroup modular?

I Theorem
If a pregroup contains a pentagon then the pivot element cannot
be invertible.

I Proof.

It suffices to prove this for pivot
element 1.

I da = (1∧ b)a = a ∧ ba ≥ b

I da = d(1∨ c) = d ∨ dc ≤ c
1

a

b

c

d
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A beautiful theorem of Anderson and Edwards

I Theorem
An `-semigroup wih right identity is distributive iff it can be
embedding into End(Ω), the `-monoid of order-preserving
endomorphisms of some chain Ω.

I The question becomes which f ∈ End(Ω) have residuals f l

and f r? Which have residuals of all orders?

I Note that f and f l form a Galois pair, as do f and f r . It
follows that if both f l and f r exist then f must preserve all
existing joins and meets in Ω.
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Which endomorphisms have residuals?

I Theorem
An endomorphism f ∈ End(Ω) has a left residual f l iff, for each
α ∈ Ω, {β : βf ≤ α} contains a greatest element. And in that case

αf l =
∨

βf≤α

β

And dually.

I Proof.

I We claim that βf ≤ α iff β ≤ αf l .
I Recall that f l f ≤ 1 ≤ ff l . Therefore
I βf ≤ α implies (apply f l to both sides)
I β = β1 ≤ βff l ≤ αf l .
I The argument for the converse is similar.
I The claim proves the theorem.
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Two violations of the theorem

α

β

f

id

To intervals of constancy To lacunas in the range



Endomorphisms with residuals must have coterminal range

I In order for an endomorphism f ∈ End(Ω) to have a left
residual f l , its range [Ω]f must be co-initial in Ω, i.e., for all
α ∈ Ω there must be some β ∈ Ω such that βf ≤ α.

I In order for f r to exist, the range of f must be cofinal in Ω,
i.e., for all α ∈ Ω there must be some β ∈ Ω such that
βf ≥ α.

I We say that the range of f is coterminal in Ω if it is both
co-initial and cofinal.
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Intervals of constancy

I Definition
Elements α, β ∈ Ω form a covering pair if α < β and, for all γ,
α ≤ γ ≤ β implies γ = α or γ = β. We write α ≺ β, and we say
that α is covered by β. We denote β by α + 1 and to α as β− 1.

I Definition
An interval of constancy of an endomorphism f is a convex subset
Λ ⊆ Ω of cardinality at least 2 such that αf = βf for all α, β ∈ Λ.
Such an interval is said to be maximal if it is contained in no
strictly larger interval of constancy.

Graph 1

I Lemma
Let f be an endomorphism for which both left and right residuals
exist. Then every interval of constancy of f is contained in a
maximal such interval, and every maximal interval Λ is of the form
[γf r , γf l ] for [Λ]f = {γ}.
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Such an interval is said to be maximal if it is contained in no
strictly larger interval of constancy.

Graph 1

I Lemma
Let f be an endomorphism for which both left and right residuals
exist. Then every interval of constancy of f is contained in a
maximal such interval, and every maximal interval Λ is of the form
[γf r , γf l ] for [Λ]f = {γ}.
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What else can we say about intervals of constancy?

I Lemma
Supppose f is an endomorphism whose second order residuals
exist. Suppose also that [α, β] is a maximal interval of constancy
of f . Then beta is covered and α is a cover.

I Proof.
(1) Suppose [α, β] ≡ Λ is a maximal interval of constancy of f ,
say [Λ]f = {γ}, and for argument’s sake suppose α is not a cover,
i.e., so that α =

∨
∆ for ∆ ≡ {δ : δ < α}. Since both f and f l

preserve order, we have
∨

∆ δff l = αff l = γf l = β.
We claim that [∆]f has no greatest element. For if so, say
δf = δ1f for some δ1 < α and all δ1 < δ < α, then f has another
interval of constancy which includes [δ1, α) but is disjoint from
[α, β]. This contradicts the closure of maximal intervals of
constancy and proves the claim.
The claim implies that each δff l is bounded above by α, i.e.,∨

∆ ff l = α, contrary to the conclusion above.
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What else can we say about lacunas in the range?

Lemma
Supppose f is an endomorphism whose second order residuals
exist. Suppose also that (αf , βf ), α ≺ β, is a maximal lacuna in
the range of f . Then αf is covered and βf is a cover.
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Intervals of constancy correspond to lacunas in the range

I Lemma
Let [α, β] ≡ Λ be a maximal interval of constancy for an
endomorphism f having all its second residuals.

I (α− 1, β) is a maximal lacuna in the range of f l , and every
such lacuna arises in this fashion.

I (α, β + 1) is a maximal lacuna in the range of f r , and every
such lacuna arises in this fashion.

I And vice-versa.

I Lemma
Let (α, β) ≡ Λ be a maximal lacuna in the range of an
endomorphism f having all its second residuals.

1. [α, β− 1] is a maximal interval of constancy for f l , and every
such interval arises in this fashion.

2. [α + 1, β] is a maximal interval of constancy for f r , and every
such interval arises in this fashion.
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Integral points

I Definition
A point α ∈ Ω is called integral if α + n exists in Ω for all n ∈ Z.

I

α− 1

α
α + 1

I Theorem
If an endomorphism f has residuals of all orders then the endpoints
of its maximal intervals of constancy, along with the endpoints of
the maximal lacunas in its support, are all integral points.
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Which properties suffice?

I Theorem
An endomorphism f ∈ End(Ω) has residuals of all orders iff it has
these properties.

I The range of f is coterminal in Ω.
I For each α ∈ Ω, the set {β : βf ≤ α} has a greatest element,

and dually.
I Each maximal interval of constancy of f has the form [α, β],

where α and β are integral points.
I Each maximal lacuna in the range of f has the form (α, β) for

integral points α and β.

I Theorem
The family of endomorphisms which satisfy these conditions, call it
E (Ω), forms a distributive `-pregroup. It is the unique largest
`-pregroup contained in End(Ω).
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A Holland-style representation for distributive `-pregroups

I Theorem
Every `-pregroup is isomorphic to a sub-`-pregroup of E (Ω) for
some chain Ω.

I If Ω has no covering pairs then End(Ω) = Aut(Ω). In fact, if
If Ω has no integral points then End(Ω) = Aut(Ω).

I Every automorphism of E (Ω) must take integeral points to
integral points.

I A sub-`-pregroup G ⊆ E (Ω) is called quasitransitive if it has
a point α0 ∈ Ω, called the source, such that for all β ∈ Ω
there is some g ∈ G for which α0g = β.

I The quasitransitive sub-`-pregroups of E (Ω) are the building
blocks of a structure theory.

I The theory of `-permutation groups is well-developed and
deep. The theory fof `-pregroups which are not `-groups
should be simpler.
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blocks of a structure theory.

I The theory of `-permutation groups is well-developed and
deep. The theory fof `-pregroups which are not `-groups
should be simpler.



An example

Ω ≡ Z
−→×Z

(m, n) f ≡
{

(2n, n) if n ≥ 1
(2n− 1, n) if n ≤ 0

(k, l) f l ≡


(
k
2 , l
)

if k is even and l ≥ 1(
k
2 , 0
)

if k is even and l ≤ 0(
k+1
2 , l

)
if k is odd and l ≤ 0(

k+1
2 , 0

)
if k is odd and l ≥ 1

f has no intervals of constancy but infinitely many lacunas in its
range.
f l has infinitely many intervals of constancy and no lacunas in its
range.



Thank you!


