Distributive ℓ-Pregroups

R. Ball, N. Galatos, and P. Jipsen

5 August 2013
A lattice-ordered pregroup, or just ℓ-pregroup, is a structure of the form $\langle L, \cdot, 1, l, r, \lor, \land, \rangle$, where

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^l x \leq 1 \leq xx^l$ and $xx^r \leq 1 \leq x^r x$.

Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.

An ℓ-pregroup is distributive if it is distributive as a lattice.

The variety of distributive ℓ-pregroups has the variety of ℓ-groups as an important subvariety. It is picked out by the equation $x^l = x^r$.

The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.
Definition

A lattice-ordered pregroup, or just ℓ-pregroup, is a structure of the form $\langle L, \cdot, 1, ^l, ^r, \lor, \land \rangle$, where

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^l x \leq 1 \leq xx^l$ and $xx^r \leq 1 \leq x^r x$.

Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.

An ℓ-pregroup is distributive if it is distributive as a lattice.

The variety of distributive ℓ-pregroups has the variety of ℓ-groups as an important subvariety. It is picked out by the equation $x^l = x^r$.

The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.
Definition

Definition

A *lattice-ordered pregroup*, or just *ℓ*-pregroup, is a structure of the form \(\langle L, \cdot, 1, ^l, ^r, \lor, \land, \rangle \), where

- \(\langle L, \cdot, 1 \rangle \) is a monoid,
- \(\langle L, \lor, \land \rangle \) is a lattice,
- multiplication on either side preserves order,
- and \(x^l x \leq 1 \leq xx^l \) and \(xx^r \leq 1 \leq x^r x \).

Alternatively, \(L \) is a residuated lattice such that \(x^{lr} = x = x^{rl} \) and \((xy)^l = y^l x^l \).

An *ℓ*-pregroup is distributive if it is distributive as a lattice.

The variety of distributive *ℓ*-pregroups has the variety of *ℓ*-groups as an important subvariety. It is picked out by the equation \(x^l = x^r \).

The elements which satisfy the foregoing equation form an *ℓ*-group inside any *ℓ*-pregroup.
Definition

A lattice-ordered pregroup, or just \(\ell\)-pregroup, is a structure of the form \(\langle L, \cdot, 1, ^l, ^r, \lor, \land, \rangle\), where

- \(\langle L, \cdot, 1 \rangle\) is a monoid,
- \(\langle L, \lor, \land \rangle\) is a lattice,
- multiplication on either side preserves order,
- and \(x^l x \leq 1 \leq xx^l\) and \(xx^r \leq 1 \leq x^r x\).

- Alternatively, \(L\) is a residuated lattice such that \(x^l r = x = x^r l\) and \((xy)^l = y^l x^l\).
- An \(\ell\)-pregroup is distributive if it is distributive as a lattice.
- The variety of distributive \(\ell\)-pregroups has the variety of \(\ell\)-groups as an important subvariety. It is picked out by the equation \(x^l = x^r\).
- The elements which satisfy the foregoing equation form an \(\ell\)-group inside any \(\ell\)-pregroup.
A lattice-ordered pregroup, or just ℓ-pregroup, is a structure of the form $\langle L, \cdot, 1, ^l, ^r, \lor, \land, \rangle$, where

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^l x \leq 1 \leq xx^l$ and $xx^r \leq 1 \leq x^r x$.

Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.

An ℓ-pregroup is distributive if it is distributive as a lattice.

The variety of distributive ℓ-pregroups has the variety of ℓ-groups as an important subvariety. It is picked out by the equation $x^l = x^r$.

The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.
A lattice-ordered pregroup, or just ℓ-pregroup, is a structure of the form \(\langle L, \cdot, 1, ^l, ^r, \lor, \land, \rangle\), where

- \(\langle L, \cdot, 1 \rangle\) is a monoid,
- \(\langle L, \lor, \land \rangle\) is a lattice,
- multiplication on either side preserves order,
- and \(x^l x \leq 1 \leq xx^l\) and \(xx^r \leq 1 \leq x^r x\).

Alternatively, \(L\) is a residuated lattice such that \(x^{lr} = x = x^{rl}\) and \((xy)^l = y^l x^l\).

An ℓ-pregroup is distributive if it is distributive as a lattice.

The variety of distributive ℓ-pregroups has the variety of ℓ-groups as an important subvariety. It is picked out by the equation \(x^l = x^r\).

The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.
A lattice-ordered pregroup, or just \(\ell \)-pregroup, is a structure of the form \(\langle L, \cdot, 1, ^l, ^r, \lor, \land \rangle \), where

- \(\langle L, \cdot, 1 \rangle \) is a monoid,
- \(\langle L, \lor, \land \rangle \) is a lattice,
- multiplication on either side preserves order,
- and \(x^l x \leq 1 \leq x x^l \) and \(x x^r \leq 1 \leq x^r x \).

Alternatively, \(L \) is a residuated lattice such that \(x^{lr} = x = x^{rl} \) and \((xy)^l = y^l x^l \).

An \(\ell \)-pregroup is distributive if it is distributive as a lattice.

The variety of distributive \(\ell \)-pregroups has the variety of \(\ell \)-groups as an important subvariety. It is picked out by the equation \(x^l = x^r \).

The elements which satisfy the foregoing equation form an \(\ell \)-group inside any \(\ell \)-pregroup.
A lattice-ordered pregroup, or just ℓ-pregroup, is a structure of the form \(\langle L, \cdot, 1, ^l, ^r, \lor, \land, \rangle\), where

- \(\langle L, \cdot, 1 \rangle\) is a monoid,
- \(\langle L, \lor, \land \rangle\) is a lattice,
- multiplication on either side preserves order,
- and \(x^l x \leq 1 \leq xx^l\) and \(xx^r \leq 1 \leq x^r x\).

Alternatively, \(L\) is a residuated lattice such that \(x^{lr} = x = x^{rl}\) and \((xy)^l = y^lx^l\).

An ℓ-pregroup is distributive if it is distributive as a lattice.

The variety of distributive ℓ-pregroups has the variety of ℓ-groups as an important subvariety. It is picked out by the equation \(x^l = x^r\).

The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.
A lattice-ordered pregroup, or just ℓ-pregroup, is a structure of the form $\langle L, \cdot, 1, l, r, \lor, \land \rangle$, where

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^l x \leq 1 \leq xx^l$ and $xx^r \leq 1 \leq x^r x$.

Alternatively, L is a residuated lattice such that $xlr = x = xrl$ and $(xy)^l = y^l x^l$.

An ℓ-pregroup is distributive if it is distributive as a lattice.

The variety of distributive ℓ-pregroups has the variety of ℓ-groups as an important subvariety. It is picked out by the equation $x^l = x^r$.

The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.
A lattice-ordered pregroup, or just ℓ-pregroup, is a structure of the form $\langle L, \cdot, 1, l, r, \lor, \land, \rangle$, where

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^l x \leq 1 \leq xx^l$ and $xx^r \leq 1 \leq x^r x$.

Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.

An ℓ-pregroup is distributive if it is distributive as a lattice.

The variety of distributive ℓ-pregroups has the variety of ℓ-groups as an important subvariety. It is picked out by the equation $x^l = x^r$.

The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.
The fat question: are all ℓ-pregroups distributive?

- A modular ℓ-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.

- Is an ℓ-pregroup modular?

Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

Proof.

It suffices to prove this for pivot element 1.

- $da = (1 \land b) a = a \land ba \geq b$
- $da = d(1 \lor c) = d \lor dc \leq c$
The fat question: are all ℓ-pregroups distributive?

- A modular ℓ-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- Is an ℓ-pregroup modular?

Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

Proof.

It suffices to prove this for pivot element 1.

- $da = (1 \land b)a = a \land ba \geq b$
- $da = d(1 \lor c) = d \lor dc \leq c$
The fat question: are all ℓ-pregroups distributive?

- A modular ℓ-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- Is an ℓ-pregroup modular?

- **Theorem**

 If a pregroup contains a pentagon then the pivot element cannot be invertible.

- **Proof.**

 It suffices to prove this for pivot element 1.

 - $da = (1 \land b)a = a \land ba \geq b$
 - $da = d(1 \lor c) = d \lor dc \leq c$
The fat question: are all ℓ-pregroups distributive?

- A modular ℓ-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- Is an ℓ-pregroup modular?

- Theorem

 If a pregroup contains a pentagon then the pivot element cannot be invertible.

- Proof.

It suffices to prove this for pivot element 1.

- $da = (1 \land b)a = a \land ba \geq b$
- $da = d(1 \lor c) = d \lor dc \leq c$
The fat question: are all \(\ell \)-pregroups distributive?

- A modular \(\ell \)-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- Is an \(\ell \)-pregroup modular?

- **Theorem**

 If a pregroup contains a pentagon then the pivot element cannot be invertible.

- **Proof.**

 It suffices to prove this for pivot element 1.

 - \(da = (1 \land b)a = a \land ba \geq b \)
 - \(da = d(1 \lor c) = d \lor dc \leq c \)
The fat question: are all \(\ell \)-pregroups distributive?

- A modular \(\ell \)-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.

- Is an \(\ell \)-pregroup modular?

Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

Proof.

It suffices to prove this for pivot element 1.

- \(da = (1 \land b)a = a \land ba \geq b \)
- \(da = d(1 \lor c) = d \lor dc \leq c \)
The fat question: are all ℓ-pregroups distributive?

- A modular ℓ-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.

- Is an ℓ-pregroup modular?

- **Theorem**

 If a pregroup contains a pentagon then the pivot element cannot be invertible.

- **Proof.**

 It suffices to prove this for pivot element 1.

 - $da = (1 \wedge b)a = a \wedge ba \geq b$

 - $da = d(1 \vee c) = d \vee dc \leq c$
The fat question: are all \(\ell \)-pregroups distributive?

- A modular \(\ell \)-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.

- Is an \(\ell \)-pregroup modular?

- **Theorem**

 If a pregroup contains a pentagon then the pivot element cannot be invertible.

- **Proof.**

 It suffices to prove this for pivot element 1.

 - \(da = (1 \wedge b)a = a \wedge ba \geq b \)
 - \(da = d(1 \vee c) = d \vee dc \leq c \)
The fat question: are all ℓ-pregroups distributive?

- A modular ℓ-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- Is an ℓ-pregroup modular?

- **Theorem**

 If a pregroup contains a pentagon then the pivot element cannot be invertible.

- **Proof.**

 It suffices to prove this for pivot element 1.

 - $da = (1 \land b)a = a \land ba \geq b$
 - $da = d(1 \lor c) = d \lor dc \leq c$
The fat question: are all ℓ-pregroups distributive?

- A modular ℓ-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.

- Is an ℓ-pregroup modular?

- **Theorem**

 If a pregroup contains a pentagon then the pivot element cannot be invertible.

- **Proof.**

 It suffices to prove this for pivot element 1.

 - $da = (1 \land b)a = a \land ba \geq b$
 - $da = d(1 \lor c) = d \lor dc \leq c$
The fat question: are all ℓ-pregroups distributive?

- A modular ℓ-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- Is an ℓ-pregroup modular?

Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

Proof.

It suffices to prove this for pivot element 1.

- $da = (1 \wedge b)a = a \wedge ba \geq b$
- $da = d(1 \vee c) = d \vee dc \leq c$
A beautiful theorem of Anderson and Edwards

Theorem

An ℓ-semigroup with right identity is distributive iff it can be embedding into End(Ω), the ℓ-monoid of order-preserving endomorphisms of some chain Ω.

- The question becomes which \(f \in \text{End}(Ω) \) have residuals \(f^l \) and \(f^r \)? Which have residuals of all orders?
- Note that \(f \) and \(f^l \) form a Galois pair, as do \(f \) and \(f^r \). It follows that if both \(f^l \) and \(f^r \) exist then \(f \) must preserve all existing joins and meets in \(Ω \).
A beautiful theorem of Anderson and Edwards

Theorem

An ℓ-semigroup with right identity is distributive iff it can be embedding into $\text{End}(\Omega)$, the ℓ-monoid of order-preserving endomorphisms of some chain Ω.

- The question becomes which $f \in \text{End}(\Omega)$ have residuals f^l and f^r? Which have residuals of all orders?
- Note that f and f^l form a Galois pair, as do f and f^r. It follows that if both f^l and f^r exist then f must preserve all existing joins and meets in Ω.
A beautiful theorem of Anderson and Edwards

Theorem

An \(\ell \)-semigroup with right identity is distributive iff it can be embedding into \(\text{End}(\Omega) \), the \(\ell \)-monoid of order-preserving endomorphisms of some chain \(\Omega \).

The question becomes which \(f \in \text{End}(\Omega) \) have residuals \(f^l \) and \(f^r \)? Which have residuals of all orders?

Note that \(f \) and \(f^l \) form a Galois pair, as do \(f \) and \(f^r \). It follows that if both \(f^l \) and \(f^r \) exist then \(f \) must preserve all existing joins and meets in \(\Omega \).
Theorem

An ℓ-semigroup with right identity is distributive iff it can be embedding into \(\text{End}(\Omega) \), the ℓ-monoid of order-preserving endomorphisms of some chain \(\Omega \).

- The question becomes which \(f \in \text{End}(\Omega) \) have residuals \(f^l \) and \(f^r \)? Which have residuals of all orders?
- Note that \(f \) and \(f^l \) form a Galois pair, as do \(f \) and \(f^r \). It follows that if both \(f^l \) and \(f^r \) exist then \(f \) must preserve all existing joins and meets in \(\Omega \).
Which endomorphisms have residuals?

- **Theorem**

 An endomorphism $f \in \text{End}(\Omega)$ has a left residual f^l iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

 $$\alpha f^l = \bigvee_{\beta f \leq \alpha} \beta$$

 And dually.

- **Proof.**

 - We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f^l$.
 - Recall that $f^l f \leq 1 \leq ff^l$. Therefore
 - $\beta f \leq \alpha$ implies (apply f^l to both sides)
 - $\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l$.
 - The argument for the converse is similar.
 - The claim proves the theorem.
Which endomorphisms have residuals?

Theorem

An endomorphism $f \in \text{End}(\Omega)$ has a left residual f^l iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f^l = \bigvee_{\beta f \leq \alpha} \beta$$

And dually.

Proof.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f^l$.
- Recall that $f^lf \leq 1 \leq ff^l$. Therefore
 - $\beta f \leq \alpha$ implies (apply f^l to both sides)
 - $\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l$.
- The argument for the converse is similar.
- The claim proves the theorem.
Which endomorphisms have residuals?

▶ Theorem

An endomorphism \(f \in \text{End}(\Omega) \) has a left residual \(f^l \) iff, for each \(\alpha \in \Omega \), \(\{ \beta : \beta f \leq \alpha \} \) contains a greatest element. And in that case

\[
\alpha f^l = \bigvee_{\beta f \leq \alpha} \beta
\]

And dually.

▶ Proof.

▶ We claim that \(\beta f \leq \alpha \) iff \(\beta \leq \alpha f^l \).
▶ Recall that \(f^l f \leq 1 \leq ff^l \). Therefore
▶ \(\beta f \leq \alpha \) implies (apply \(f^l \) to both sides)
▶ \(\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l \).
▶ The argument for the converse is similar.
▶ The claim proves the theorem.
Which endomorphisms have residuals?

- **Theorem**

 An endomorphism \(f \in \text{End}(\Omega) \) has a left residual \(f^l \) iff, for each \(\alpha \in \Omega \), \(\{ \beta : \beta f \leq \alpha \} \) contains a greatest element. And in that case

 \[
 \alpha f^l = \bigvee_{\beta f \leq \alpha} \beta
 \]

 And dually.

- **Proof.**

 - We claim that \(\beta f \leq \alpha \) iff \(\beta \leq \alpha f^l \).
 - Recall that \(f^l f \leq 1 \leq ff^l \). Therefore
 - \(\beta f \leq \alpha \) implies (apply \(f^l \) to both sides)
 - \(\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l \).
 - The argument for the converse is similar.
 - The claim proves the theorem.
Which endomorphisms have residuals?

Theorem

An endomorphism $f \in \text{End}(\Omega)$ has a left residual f^l iff, for each $\alpha \in \Omega$, \{\beta : \beta f \leq \alpha\} contains a greatest element. And in that case

$$\alpha f^l = \bigvee_{\beta f \leq \alpha} \beta$$

And dually.

Proof.

We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f^l$.

Recall that $f^l f \leq 1 \leq ff^l$. Therefore

$\beta f \leq \alpha$ implies (apply f^l to both sides)

$\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l$.

The argument for the converse is similar.

The claim proves the theorem.
Which endomorphisms have residuals?

- **Theorem**

 An endomorphism $f \in \text{End}(\Omega)$ *has a left residual* f^l *iff, for each* $\alpha \in \Omega$, *the set* $\{\beta : \beta f \leq \alpha\}$ *contains a greatest element. And in that case*

 $$\alpha f^l = \bigvee_{\beta f \leq \alpha} \beta$$

 And dually.

- **Proof.**

 - We claim that $\beta f \leq \alpha$ *iff* $\beta \leq \alpha f^l$.
 - Recall that $f^l f \leq 1 \leq ff^l$. Therefore
 - $\beta f \leq \alpha$ implies (apply f^l to both sides)
 - $\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l$.
 - The argument for the converse is similar.
 - The claim proves the theorem.
Which endomorphisms have residuals?

▶ **Theorem**

An endomorphism \(f \in \text{End}(\Omega) \) has a left residual \(f^l \) iff, for each \(\alpha \in \Omega \), \(\{ \beta : \beta f \leq \alpha \} \) contains a greatest element. And in that case

\[
\alpha f^l = \bigvee_{\beta f \leq \alpha} \beta
\]

And dually.

▶ **Proof.**

▶ We claim that \(\beta f \leq \alpha \) iff \(\beta \leq \alpha f^l \).
▶ Recall that \(f^l f \leq 1 \leq ff^l \). Therefore
▶ \(\beta f \leq \alpha \) implies (apply \(f^l \) to both sides)
▶ \(\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l \).
▶ The argument for the converse is similar.
▶ The claim proves the theorem.
Which endomorphisms have residuals?

▶ Theorem

An endomorphism \(f \in \text{End}(\Omega) \) has a left residual \(f^l \) iff, for each \(\alpha \in \Omega \), \(\{ \beta : \beta f \leq \alpha \} \) contains a greatest element. And in that case

\[
\alpha f^l = \bigvee_{\beta f \leq \alpha} \beta
\]

And dually.

▶ Proof.

▶ We claim that \(\beta f \leq \alpha \) iff \(\beta \leq \alpha f^l \).
▶ Recall that \(f^l f \leq 1 \leq ff^l \). Therefore
▶ \(\beta f \leq \alpha \) implies (apply \(f^l \) to both sides)
▶ \(\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l \).
▶ The argument for the converse is similar.
▶ The claim proves the theorem.
Which endomorphisms have residuals?

- **Theorem**

 An endomorphism \(f \in \text{End}(\Omega) \) has a left residual \(f^l \) iff, for each \(\alpha \in \Omega \), \(\{ \beta : \beta f \leq \alpha \} \) contains a greatest element. And in that case

 \[
 \alpha f^l = \bigvee_{\beta f \leq \alpha} \beta
 \]

 And dually.

- **Proof.**

 - We claim that \(\beta f \leq \alpha \) iff \(\beta \leq \alpha f^l \).
 - Recall that \(f^l f \leq 1 \leq ff^l \). Therefore
 - \(\beta f \leq \alpha \) implies (apply \(f^l \) to both sides)
 - \(\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l \).
 - The argument for the converse is similar.
 - The claim proves the theorem.
Which endomorphisms have residuals?

- **Theorem**

 An endomorphism $f \in \text{End}(\Omega)$ has a left residual f^l iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

 $$\alpha f^l = \bigvee_{\beta f \leq \alpha} \beta$$

 And dually.

- **Proof.**

 - We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f^l$.
 - Recall that $f^lf \leq 1 \leq ff^l$. Therefore
 - $\beta f \leq \alpha$ implies (apply f^l to both sides)
 - $\beta = \beta 1 \leq \beta ff^l \leq \alpha f^l$.
 - The argument for the converse is similar.
 - The claim proves the theorem.
Two violations of the theorem

- To intervals of constancy
- To lacunas in the range
Endomorphisms with residuals must have coterminial range

- In order for an endomorphism $f \in \text{End}(\Omega)$ to have a left residual f^l, its range $[\Omega]f$ must be co-initial in Ω, i.e., for all $\alpha \in \Omega$ there must be some $\beta \in \Omega$ such that $\beta f \leq \alpha$.

- In order for f^r to exist, the range of f must be cofinal in Ω, i.e., for all $\alpha \in \Omega$ there must be some $\beta \in \Omega$ such that $\beta f \geq \alpha$.

- We say that the range of f is coterminial in Ω if it is both co-initial and cofinal.
Endomorphisms with residuals must have coterminal range

- In order for an endomorphism $f \in \text{End}(\Omega)$ to have a left residual f^l, its range $[\Omega]f$ must be co-initial in Ω, i.e., for all $\alpha \in \Omega$ there must be some $\beta \in \Omega$ such that $\beta f \leq \alpha$.

- In order for f^r to exist, the range of f must be cofinal in Ω, i.e., for all $\alpha \in \Omega$ there must be some $\beta \in \Omega$ such that $\beta f \geq \alpha$.

- We say that the range of f is *coterminal in* Ω if it is both co-initial and cofinal.
Endomorphisms with residuals must have coterminal range

- In order for an endomorphism $f \in \text{End}(\Omega)$ to have a left residual f^l, its range $[\Omega]f$ must be co-initial in Ω, i.e., for all $\alpha \in \Omega$ there must be some $\beta \in \Omega$ such that $\beta f \leq \alpha$.
- In order for f^r to exist, the range of f must be cofinal in Ω, i.e., for all $\alpha \in \Omega$ there must be some $\beta \in \Omega$ such that $\beta f \geq \alpha$.
- We say that the range of f is \textit{coterminal in Ω} if it is both co-initial and cofinal.
Intervals of constancy

Definition
Elements $\alpha, \beta \in \Omega$ form a covering pair if $\alpha < \beta$ and, for all γ, $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is covered by β. We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition
An interval of constancy of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

Lemma
Let f be an endomorphism for which both left and right residuals exist. Then every interval of constancy of f is contained in a maximal such interval, and every maximal interval Λ is of the form $[\gamma f^r, \gamma f^l]$ for $[\Lambda]f = \{\gamma\}$.
Intervals of constancy

Definition
Elements $\alpha, \beta \in \Omega$ form a covering pair if $\alpha < \beta$ and, for all γ, $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is covered by β. We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition
An interval of constancy of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

Lemma
Let f be an endomorphism for which both left and right residuals exist. Then every interval of constancy of f is contained in a maximal such interval, and every maximal interval Λ is of the form $[\gamma f^r, \gamma f^l]$ for $[\Lambda]f = \{\gamma\}$.
Intervals of constancy

Definition
Elements $\alpha, \beta \in \Omega$ form a covering pair if $\alpha < \beta$ and, for all γ, $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is covered by β. We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition
An interval of constancy of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

Lemma
Let f be an endomorphism for which both left and right residuals exist. Then every interval of constancy of f is contained in a maximal such interval, and every maximal interval Λ is of the form $[\gamma f^r, \gamma f^l]$ for $[\Lambda]f = \{\gamma\}$.
Intervals of constancy

Definition
Elements $\alpha, \beta \in \Omega$ form a covering pair if $\alpha < \beta$ and, for all γ, $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is covered by β. We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition
An interval of constancy of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

Lemma
Let f be an endomorphism for which both left and right residuals exist. Then every interval of constancy of f is contained in a maximal such interval, and every maximal interval Λ is of the form $[\gamma f^r, \gamma f^l]$ for $[\Lambda] f = \{\gamma\}$.
Intervals of constancy

Definition
Elements $\alpha, \beta \in \Omega$ form a covering pair if $\alpha < \beta$ and, for all γ, $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is covered by β. We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition
An interval of constancy of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

Lemma
Let f be an endomorphism for which both left and right residuals exist. Then every interval of constancy of f is contained in a maximal such interval, and every maximal interval Λ is of the form $[\gamma f^r, \gamma f^l]$ for $[\Lambda]f = \{\gamma\}$.

Graph 1
Intervals of constancy

Definition
Elements $\alpha, \beta \in \Omega$ form a covering pair if $\alpha < \beta$ and, for all γ, $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is covered by β. We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition
An interval of constancy of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

Lemma
Let f be an endomorphism for which both left and right residuals exist. Then every interval of constancy of f is contained in a maximal such interval, and every maximal interval Λ is of the form $[\gamma f^r, \gamma f^l]$ for $[\Lambda] f = \{\gamma\}$.
lacunas in the range

Definition
A lacuna in the range of f is a nonempty convex subset $\Lambda \subseteq \Omega$ which is disjoint from the range of f. Such an interval is said to be maximal if it is contained in no strictly larger lacuna in the range of f.

Lemma
Let f be an endomorphism for which both left and right residuals exist. Every point γ not in the range of f is contained in a maximal lacuna in the range of f. Then

$$\alpha \equiv \gamma f^l \prec \gamma f^r \equiv \beta,$$

and the lacuna is $(\alpha f, \beta f)$.
Definition

A lacuna in the range of f is a nonempty convex subset $\Lambda \subseteq \Omega$ which is disjoint from the range of f. Such an interval is said to be maximal if it is contained in no strictly larger lacuna in the range of f.

Lemma

Let f be an endomorphism for which both left and right residuals exist. Every point γ not in the range of f is contained in a maximal lacuna in the range of f. Then

$$\alpha \equiv \gamma f^l \prec \gamma f^r \equiv \beta,$$

and the lacuna is $(\alpha f, \beta f)$.
lacunas in the range

Definition

A lacuna in the range of f is a nonempty convex subset $\Lambda \subseteq \Omega$ which is disjoint from the range of f. Such an interval is said to be maximal if it is contained in no strictly larger lacuna in the range of f.

Lemma

Let f be an endomorphism for which both left and right residuals exist. Every point γ not in the range of f is contained in a maximal lacuna in the range of f. Then

$$\alpha \equiv \gamma f^l < \gamma f^r \equiv \beta,$$

and the lacuna is $(\alpha f, \beta f)$.
lacunas in the range

Definition
A lacuna in the range of f is a nonempty convex subset $\Lambda \subseteq \Omega$ which is disjoint from the range of f. Such an interval is said to be maximal if it is contained in no strictly larger lacuna in the range of f.

Lemma
Let f be an endomorphism for which both left and right residuals exist. Every point γ not in the range of f is contained in a maximal lacuna in the range of f. Then

$$\alpha \equiv \gamma f^l \prec \gamma f^r \equiv \beta,$$

and the lacuna is $(\alpha f, \beta f)$.
What else can we say about intervals of constancy?

Lemma

Suppose f is an endomorphism whose second order residuals exist. Suppose also that $[\alpha, \beta]$ is a maximal interval of constancy of f. Then beta is covered and α is a cover.

Proof.

(1) Suppose $[\alpha, \beta] \equiv \Lambda$ is a maximal interval of constancy of f, say $[\Lambda]f = \{\gamma\}$, and for argument’s sake suppose α is not a cover, i.e., so that $\alpha = \bigvee \Delta$ for $\Delta \equiv \{\delta : \delta < \alpha\}$. Since both f and f^l preserve order, we have $\bigvee \Delta \delta ff^l = \alpha ff^l = \gamma f^l = \beta$.

We claim that $[\Delta]f$ has no greatest element. For if so, say $\delta f = \delta_1 f$ for some $\delta_1 < \alpha$ and all $\delta_1 < \delta < \alpha$, then f has another interval of constancy which includes $[\delta_1, \alpha)$ but is disjoint from $[\alpha, \beta]$. This contradicts the closure of maximal intervals of constancy and proves the claim.

The claim implies that each δff^l is bounded above by α, i.e., $\bigvee \Delta ff^l = \alpha$, contrary to the conclusion above.
What else can we say about intervals of constancy?

Lemma
Suppose \(f \) is an endomorphism whose second order residuals exist. Suppose also that \([\alpha, \beta]\) is a maximal interval of constancy of \(f \). Then \(\beta \) is covered and \(\alpha \) is a cover.

Proof.
(1) Suppose \([\alpha, \beta] \equiv \Lambda\) is a maximal interval of constancy of \(f \), say \([\Lambda]f = \{\gamma\}\), and for argument’s sake suppose \(\alpha \) is not a cover, i.e., so that \(\alpha = \bigvee \Delta \) for \(\Delta \equiv \{\delta : \delta < \alpha\}\). Since both \(f \) and \(f^l \) preserve order, we have \(\bigvee_{\Delta} \delta f^l = \alpha f^l = \gamma f^l = \beta \).

We claim that \([\Delta]f\) has no greatest element. For if so, say \(\delta f = \delta_1 f \) for some \(\delta_1 < \alpha \) and all \(\delta_1 < \delta < \alpha \), then \(f \) has another interval of constancy which includes \([\delta_1, \alpha)\) but is disjoint from \([\alpha, \beta]\). This contradicts the closure of maximal intervals of constancy and proves the claim.

The claim implies that each \(\delta f^l \) is bounded above by \(\alpha \), i.e., \(\bigvee_{\Delta} \delta f^l = \alpha \), contrary to the conclusion above.
What else can we say about intervals of constancy?

Lemma
Suppose f is an endomorphism whose second order residuals exist. Suppose also that $[\alpha, \beta]$ is a maximal interval of constancy of f. Then beta is covered and α is a cover.

Proof.
(1) Suppose $[\alpha, \beta] \equiv \Lambda$ is a maximal interval of constancy of f, say $[\Lambda]f = \{\gamma\}$, and for argument’s sake suppose α is not a cover, i.e., so that $\alpha = \bigvee \Delta$ for $\Delta \equiv \{\delta : \delta < \alpha\}$. Since both f and f^l preserve order, we have $\bigvee \Delta \delta f l = \alpha f l = \gamma f l = \beta$.

We claim that $[\Delta]f$ has no greatest element. For if so, say $\delta f = \delta_1 f$ for some $\delta_1 < \alpha$ and all $\delta_1 < \delta < \alpha$, then f has another interval of constancy which includes $[\delta_1, \alpha)$ but is disjoint from $[\alpha, \beta]$. This contradicts the closure of maximal intervals of constancy and proves the claim.

The claim implies that each $\delta f l$ is bounded above by α, i.e., $\bigvee \Delta \delta f l = \alpha$, contrary to the conclusion above.
What else can we say about intervals of constancy?

Lemma
Suppose f is an endomorphism whose second order residuals exist. Suppose also that $[\alpha, \beta]$ is a maximal interval of constancy of f. Then beta is covered and α is a cover.

Proof.
(1) Suppose $[\alpha, \beta] \equiv \Lambda$ is a maximal interval of constancy of f, say $[\Lambda]f = \{\gamma\}$, and for argument's sake suppose α is not a cover, i.e., so that $\alpha = \bigvee \Delta$ for $\Delta \equiv \{\delta : \delta < \alpha\}$. Since both f and f^l preserve order, we have $\bigvee_\Delta \delta f^l = \alpha f^l = \gamma f^l = \beta$.

We claim that $[\Delta]f$ has no greatest element. For if so, say $\delta f = \delta_1 f$ for some $\delta_1 < \alpha$ and all $\delta_1 < \delta < \alpha$, then f has another interval of constancy which includes $[\delta_1, \alpha)$ but is disjoint from $[\alpha, \beta]$. This contradicts the closure of maximal intervals of constancy and proves the claim.

The claim implies that each δf^l is bounded above by α, i.e., $\bigvee_\Delta \delta f^l = \alpha$, contrary to the conclusion above.
What else can we say about lacunas in the range?

Lemma

Suppose f is an endomorphism whose second order residuals exist. Suppose also that $(\alpha f, \beta f)$, $\alpha \prec \beta$, is a maximal lacuna in the range of f. Then αf is covered and βf is a cover.
Intervals of constancy correspond to lacunas in the range

Lemma
Let \([\alpha, \beta] \equiv \Lambda\) be a maximal interval of constancy for an endomorphism \(f\) having all its second residuals.

\begin{itemize}
 \item \((\alpha - 1, \beta)\) is a maximal lacuna in the range of \(f^l\), and every such lacuna arises in this fashion.
 \item \((\alpha, \beta + 1)\) is a maximal lacuna in the range of \(f^r\), and every such lacuna arises in this fashion.
\end{itemize}

And vice-versa.

Lemma
Let \((\alpha, \beta) \equiv \Lambda\) be a maximal lacuna in the range of an endomorphism \(f\) having all its second residuals.

\begin{enumerate}
 \item \([\alpha, \beta - 1]\) is a maximal interval of constancy for \(f^l\), and every such interval arises in this fashion.
 \item \([\alpha + 1, \beta]\) is a maximal interval of constancy for \(f^r\), and every such interval arises in this fashion.
\end{enumerate}
Intervals of constancy correspond to lacunas in the range

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- $(\alpha - 1, \beta)$ is a maximal lacuna in the range of f^l, and every such lacuna arises in this fashion.
- $(\alpha, \beta + 1)$ is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.

And vice-versa.

Lemma

Let $(\alpha, \beta) \equiv \Lambda$ be a maximal lacuna in the range of an endomorphism f having all its second residuals.

1. $[\alpha, \beta - 1]$ is a maximal interval of constancy for f^l, and every such interval arises in this fashion.
2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r, and every such interval arises in this fashion.
Intervals of constancy correspond to lacunases in the range

Lemma
Let \([\alpha, \beta] \equiv \Lambda\) be a maximal interval of constancy for an endomorphism \(f\) having all its second residuals.

\(\alpha - 1, \beta\) is a maximal lacuna in the range of \(f^l\), and every such lacuna arises in this fashion.

\(\alpha, \beta + 1\) is a maximal lacuna in the range of \(f^r\), and every such lacuna arises in this fashion.

And vice-versa.

Lemma
Let \((\alpha, \beta) \equiv \Lambda\) be a maximal lacuna in the range of an endomorphism \(f\) having all its second residuals.

1. \([\alpha, \beta - 1]\) is a maximal interval of constancy for \(f^l\), and every such interval arises in this fashion.
2. \([\alpha + 1, \beta]\) is a maximal interval of constancy for \(f^r\), and every such interval arises in this fashion.
Intervals of constancy correspond to lacunas in the range

Lemma
Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- $(\alpha - 1, \beta)$ is a maximal lacuna in the range of f^l, and every such lacuna arises in this fashion.
- $(\alpha, \beta + 1)$ is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.

And vice-versa.

Lemma
Let $(\alpha, \beta) \equiv \Lambda$ be a maximal lacuna in the range of an endomorphism f having all its second residuals.

1. $[\alpha, \beta - 1]$ is a maximal interval of constancy for f^l, and every such interval arises in this fashion.
2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r, and every such interval arises in this fashion.
Intervals of constancy correspond to lacunas in the range

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- $(\alpha - 1, \beta)$ is a maximal lacuna in the range of f^l, and every such lacuna arises in this fashion.
- $(\alpha, \beta + 1)$ is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.

And vice-versa.

Lemma

Let $(\alpha, \beta) \equiv \Lambda$ be a maximal lacuna in the range of an endomorphism f having all its second residuals.

1. $[\alpha, \beta - 1]$ is a maximal interval of constancy for f^l, and every such interval arises in this fashion.
2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r, and every such interval arises in this fashion.
Intervals of constancy correspond to lacunas in the range

巨头

Lemma
Let \([\alpha, \beta] \equiv \Lambda\) be a maximal interval of constancy for an endomorphism \(f\) having all its second residuals.

\(\alpha - 1, \beta\) is a maximal lacuna in the range of \(f^l\), and every such lacuna arises in this fashion.

\(\alpha, \beta + 1\) is a maximal lacuna in the range of \(f^r\), and every such lacuna arises in this fashion.

And vice-versa.

Lemma
Let \((\alpha, \beta) \equiv \Lambda\) be a maximal lacuna in the range of an endomorphism \(f\) having all its second residuals.

1. \([\alpha, \beta - 1]\) is a maximal interval of constancy for \(f^l\), and every such interval arises in this fashion.
2. \([\alpha + 1, \beta]\) is a maximal interval of constancy for \(f^r\), and every such interval arises in this fashion.
Intervals of constancy correspond to lacunas in the range

Lemma
Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

1. $(\alpha - 1, \beta)$ is a maximal lacuna in the range of f^l, and every such lacuna arises in this fashion.
2. $(\alpha, \beta + 1)$ is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.

And vice-versa.

Lemma
Let $(\alpha, \beta) \equiv \Lambda$ be a maximal lacuna in the range of an endomorphism f having all its second residuals.

1. $[\alpha, \beta - 1]$ is a maximal interval of constancy for f^l, and every such interval arises in this fashion.
2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r, and every such interval arises in this fashion.
Intervals of constancy correspond to lacunas in the range

Lemma
Let \([\alpha, \beta] \equiv \Lambda\) be a maximal interval of constancy for an endomorphism \(f\) having all its second residuals.

- \((\alpha - 1, \beta)\) is a maximal lacuna in the range of \(f^l\), and every such lacuna arises in this fashion.
- \((\alpha, \beta + 1)\) is a maximal lacuna in the range of \(f^r\), and every such lacuna arises in this fashion.

And vice-versa.

Lemma
Let \((\alpha, \beta) \equiv \Lambda\) be a maximal lacuna in the range of an endomorphism \(f\) having all its second residuals.

1. \([\alpha, \beta - 1]\) is a maximal interval of constancy for \(f^l\), and every such interval arises in this fashion.
2. \([\alpha + 1, \beta]\) is a maximal interval of constancy for \(f^r\), and every such interval arises in this fashion.
Intervals of constancy correspond to lacunas in the range

Lemma
Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- $(\alpha - 1, \beta)$ is a maximal lacuna in the range of f^l, and every such lacuna arises in this fashion.
- $(\alpha, \beta + 1)$ is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.

And vice-versa.

Lemma
Let $(\alpha, \beta) \equiv \Lambda$ be a maximal lacuna in the range of an endomorphism f having all its second residuals.

1. $[\alpha, \beta - 1]$ is a maximal interval of constancy for f^l, and every such interval arises in this fashion.
2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r, and every such interval arises in this fashion.
Integral points

Definition
A point \(\alpha \in \Omega \) is called integral if \(\alpha + n \) exists in \(\Omega \) for all \(n \in \mathbb{Z} \).

Theorem
If an endomorphism \(f \) has residuals of all orders then the endpoints of its maximal intervals of constancy, along with the endpoints of the maximal lacunas in its support, are all integral points.
Integral points

Definition
A point $\alpha \in \Omega$ is called \textit{integral} if $\alpha + n$ exists in Ω for all $n \in \mathbb{Z}$.

Theorem
If an endomorphism f has residuals of all orders then the endpoints of its maximal intervals of constancy, along with the endpoints of the maximal lacunas in its support, are all integral points.
Integral points

▶ Definition
A point $\alpha \in \Omega$ is called integral if $\alpha + n$ exists in Ω for all $n \in \mathbb{Z}$.

▶ Theorem
If an endomorphism f has residuals of all orders then the endpoints of its maximal intervals of constancy, along with the endpoints of the maximal lacunas in its support, are all integral points.
Integral points

- **Definition**
 A point $\alpha \in \Omega$ is called *integral* if $\alpha + n$ exists in Ω for all $n \in \mathbb{Z}$.

- **Theorem**
 If an endomorphism f has residuals of all orders then the endpoints of its maximal intervals of constancy, along with the endpoints of the maximal lacunas in its support, are all integral points.
Integral points

★ Definition
A point $\alpha \in \Omega$ is called integral if $\alpha + n$ exists in Ω for all $n \in \mathbb{Z}$.

★ Theorem
If an endomorphism f has residuals of all orders then the endpoints of its maximal intervals of constancy, along with the endpoints of the maximal lacunas in its support, are all integral points.
Which properties suffice?

▶ Theorem
An endomorphism \(f \in \text{End}(\Omega) \) has residuals of all orders iff it has these properties.
- The range of \(f \) is coterminal in \(\Omega \).
- For each \(\alpha \in \Omega \), the set \(\{ \beta : \beta f \leq \alpha \} \) has a greatest element, and dually.
- Each maximal interval of constancy of \(f \) has the form \([\alpha, \beta]\), where \(\alpha \) and \(\beta \) are integral points.
- Each maximal lacuna in the range of \(f \) has the form \((\alpha, \beta)\) for integral points \(\alpha \) and \(\beta \).

▶ Theorem
The family of endomorphisms which satisfy these conditions, call it \(E(\Omega) \), forms a distributive \(\ell \)-pregroup. It is the unique largest \(\ell \)-pregroup contained in \(\text{End}(\Omega) \).
Which properties suffice?

▶ **Theorem**

An endomorphism $f \in \text{End}(\Omega)$ has residuals of all orders iff it has these properties.

▶ The range of f is coterminal in Ω.
▶ For each $\alpha \in \Omega$, the set $\{\beta : \beta f \leq \alpha\}$ has a greatest element, and dually.
▶ Each maximal interval of constancy of f has the form $[\alpha, \beta]$, where α and β are integral points.
▶ Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

▶ **Theorem**

The family of endomorphisms which satisfy these conditions, call it $E(\Omega)$, forms a distributive ℓ-pregroup. It is the unique largest ℓ-pregroup contained in $\text{End}(\Omega)$.
Which properties suffice?

- **Theorem**
 An endomorphism \(f \in \text{End}(\Omega) \) has residuals of all orders iff it has these properties.
 - The range of \(f \) is coterminal in \(\Omega \).
 - For each \(\alpha \in \Omega \), the set \(\{ \beta : \beta f \leq \alpha \} \) has a greatest element, and dually.
 - Each maximal interval of constancy of \(f \) has the form \([\alpha, \beta]\), where \(\alpha \) and \(\beta \) are integral points.
 - Each maximal lacuna in the range of \(f \) has the form \((\alpha, \beta)\) for integral points \(\alpha \) and \(\beta \).

- **Theorem**
 The family of endomorphisms which satisfy these conditions, call it \(E(\Omega) \), forms a distributive \(\ell \)-pregroup. It is the unique largest \(\ell \)-pregroup contained in \(\text{End}(\Omega) \).
Which properties suffice?

- **Theorem**
 An endomorphism \(f \in \text{End}(\Omega) \) has residuals of all orders iff it has these properties.
 - The range of \(f \) is coterminal in \(\Omega \).
 - For each \(\alpha \in \Omega \), the set \(\{ \beta : \beta f \leq \alpha \} \) has a greatest element, and dually.
 - Each maximal interval of constancy of \(f \) has the form \([\alpha, \beta]\), where \(\alpha \) and \(\beta \) are integral points.
 - Each maximal lacuna in the range of \(f \) has the form \((\alpha, \beta)\) for integral points \(\alpha \) and \(\beta \).

- **Theorem**
 The family of endomorphisms which satisfy these conditions, call it \(E(\Omega) \), forms a distributive \(\ell \)-pregroup. It is the unique largest \(\ell \)-pregroup contained in \(\text{End}(\Omega) \).
Which properties suffice?

▶ Theorem
An endomorphism \(f \in \text{End}(\Omega) \) has residuals of all orders iff it has these properties.

- The range of \(f \) is coterminal in \(\Omega \).
- For each \(\alpha \in \Omega \), the set \(\{ \beta : \beta f \leq \alpha \} \) has a greatest element, and dually.
- Each maximal interval of constancy of \(f \) has the form \([\alpha, \beta]\), where \(\alpha \) and \(\beta \) are integral points.
- Each maximal lacuna in the range of \(f \) has the form \((\alpha, \beta)\) for integral points \(\alpha \) and \(\beta \).

▶ Theorem
The family of endomorphisms which satisfy these conditions, call it \(E(\Omega) \), forms a distributive \(\ell \)-pregroup. It is the unique largest \(\ell \)-pregroup contained in \(\text{End}(\Omega) \).
Which properties suffice?

▶ Theorem

An endomorphism \(f \in \text{End}(\Omega) \) *has residuals of all orders iff it has these properties.*

▶ The range of \(f \) is coterminal in \(\Omega \).
▶ For each \(\alpha \in \Omega \), the set \(\{ \beta : \beta f \leq \alpha \} \) has a greatest element, and dually.
▶ Each maximal interval of constancy of \(f \) has the form \([\alpha, \beta]\), where \(\alpha \) and \(\beta \) are integral points.
▶ Each maximal lacuna in the range of \(f \) has the form \((\alpha, \beta)\) for integral points \(\alpha \) and \(\beta \).

▶ Theorem

The family of endomorphisms which satisfy these conditions, call it \(E(\Omega) \), *forms a distributive \(\ell \)-pregroup. It is the unique largest \(\ell \)-pregroup contained in* \(\text{End}(\Omega) \).
Which properties suffice?

▶ Theorem

An endomorphism $f \in \text{End}(\Omega)$ has residuals of all orders iff it has these properties.

- The range of f is coterminal in Ω.
- For each $\alpha \in \Omega$, the set $\{\beta : \beta f \leq \alpha\}$ has a greatest element, and dually.
- Each maximal interval of constancy of f has the form $[\alpha, \beta]$, where α and β are integral points.
- Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

▶ Theorem

The family of endomorphisms which satisfy these conditions, call it $E(\Omega)$, forms a distributive ℓ-pregroup. It is the unique largest ℓ-pregroup contained in $\text{End}(\Omega)$.
Which properties suffice?

▶ **Theorem**

An endomorphism \(f \in \text{End}(\Omega) \) has residuals of all orders iff it has these properties.

- The range of \(f \) is coterminal in \(\Omega \).
- For each \(\alpha \in \Omega \), the set \(\{ \beta : \beta f \leq \alpha \} \) has a greatest element, and dually.
- Each maximal interval of constancy of \(f \) has the form \([\alpha, \beta]\), where \(\alpha \) and \(\beta \) are integral points.
- Each maximal lacuna in the range of \(f \) has the form \((\alpha, \beta)\) for integral points \(\alpha \) and \(\beta \).

▶ **Theorem**

The family of endomorphisms which satisfy these conditions, call it \(E(\Omega) \), forms a distributive \(\ell \)-pregroup. It is the unique largest \(\ell \)-pregroup contained in \(\text{End}(\Omega) \).
A Holland-style representation for distributive ℓ-pregroups

Theorem

Every ℓ-pregroup is isomorphic to a sub-ℓ-pregroup of $E(\Omega)$ for some chain Ω.

- If Ω has no covering pairs then $\text{End}(\Omega) = \text{Aut}(\Omega)$. In fact, if Ω has no integral points then $\text{End}(\Omega) = \text{Aut}(\Omega)$.
- Every automorphism of $E(\Omega)$ must take integral points to integral points.
- A sub-ℓ-pregroup $G \subseteq E(\Omega)$ is called quasitransitive if it has a point $\alpha_0 \in \Omega$, called the source, such that for all $\beta \in \Omega$ there is some $g \in G$ for which $\alpha_0 g = \beta$.
- The quasitransitive sub-ℓ-pregroups of $E(\Omega)$ are the building blocks of a structure theory.
- The theory of ℓ-permutation groups is well-developed and deep. The theory of ℓ-pregroups which are not ℓ-groups should be simpler.
A Holland-style representation for distributive ℓ-pregroups

- **Theorem**

 Every ℓ-pregroup is isomorphic to a sub-ℓ-pregroup of $E(\Omega)$ for some chain Ω.

 - If Ω has no covering pairs then $\text{End}(\Omega) = \text{Aut}(\Omega)$. In fact, if Ω has no integral points then $\text{End}(\Omega) = \text{Aut}(\Omega)$.

 - Every automorphism of $E(\Omega)$ must take integral points to integral points.

 - A sub-ℓ-pregroup $G \subseteq E(\Omega)$ is called *quasitransitive* if it has a point $\alpha_0 \in \Omega$, called the source, such that for all $\beta \in \Omega$ there is some $g \in G$ for which $\alpha_0 g = \beta$.

 - The quasitransitive sub-ℓ-pregroups of $E(\Omega)$ are the building blocks of a structure theory.

 - The theory of ℓ-permutation groups is well-developed and deep. The theory of ℓ-pregroups which are not ℓ-groups should be simpler.
A Holland-style representation for distributive ℓ-pregroups

- **Theorem**

 Every ℓ-pregroup is isomorphic to a sub-ℓ-pregroup of $E(\Omega)$ for some chain Ω.

 - If Ω has no covering pairs then $\text{End}(\Omega) = \text{Aut}(\Omega)$. In fact, if Ω has no integral points then $\text{End}(\Omega) = \text{Aut}(\Omega)$.

 - Every automorphism of $E(\Omega)$ must take integral points to integral points.

 - A sub-ℓ-pregroup $G \subseteq E(\Omega)$ is called *quasitransitive* if it has a point $\alpha_0 \in \Omega$, called the source, such that for all $\beta \in \Omega$ there is some $g \in G$ for which $\alpha_0 g = \beta$.

 - The quasitransitive sub-ℓ-pregroups of $E(\Omega)$ are the building blocks of a structure theory.

 - The theory of ℓ-permutation groups is well-developed and deep. The theory of ℓ-pregroups which are not ℓ-groups should be simpler.
A Holland-style representation for distributive ℓ-pregroups

- **Theorem**

 Every ℓ-pregroup is isomorphic to a sub-ℓ-pregroup of $E(\Omega)$ for some chain Ω.

 - If Ω has no covering pairs then $\text{End}(\Omega) = \text{Aut}(\Omega)$. In fact, if Ω has no integral points then $\text{End}(\Omega) = \text{Aut}(\Omega)$.
 - Every automorphism of $E(\Omega)$ must take integral points to integral points.
 - A sub-ℓ-pregroup $G \subseteq E(\Omega)$ is called *quasitransitive* if it has a point $\alpha_0 \in \Omega$, called the source, such that for all $\beta \in \Omega$ there is some $g \in G$ for which $\alpha_0 g = \beta$.
 - The quasitransitive sub-ℓ-pregroups of $E(\Omega)$ are the building blocks of a structure theory.
 - The theory of ℓ-permutation groups is well-developed and deep. The theory of ℓ-pregroups which are not ℓ-groups should be simpler.
A Holland-style representation for distributive ℓ-pregroups

- **Theorem**

 *Every ℓ-pregroup is isomorphic to a sub-ℓ-pregroup of $E(\Omega)$ for some chain Ω.***

 - If Ω has no covering pairs then $\text{End}(\Omega) = \text{Aut}(\Omega)$. In fact, if Ω has no integral points then $\text{End}(\Omega) = \text{Aut}(\Omega)$.
 - Every automorphism of $E(\Omega)$ must take integral points to integral points.
 - A sub-ℓ-pregroup $G \subseteq E(\Omega)$ is called *quasitransitive* if it has a point $\alpha_0 \in \Omega$, called the source, such that for all $\beta \in \Omega$ there is some $g \in G$ for which $\alpha_0 g = \beta$.
 - The quasitransitive sub-ℓ-pregroups of $E(\Omega)$ are the building blocks of a structure theory.
 - The theory of ℓ-permutation groups is well-developed and deep. The theory for ℓ-pregroups which are not ℓ-groups should be simpler.
A Holland-style representation for distributive \(\ell\)-pregroups

- **Theorem**

 Every \(\ell\)-pregroup is isomorphic to a sub-\(\ell\)-pregroup of \(E(\Omega)\) for some chain \(\Omega\).

 - If \(\Omega\) has no covering pairs then \(\text{End}(\Omega) = \text{Aut}(\Omega)\). In fact, if \(\Omega\) has no integral points then \(\text{End}(\Omega) = \text{Aut}(\Omega)\).

 - Every automorphism of \(E(\Omega)\) must take integral points to integral points.

 - A sub-\(\ell\)-pregroup \(G \subseteq E(\Omega)\) is called *quasitransitive* if it has a point \(\alpha_0 \in \Omega\), called the source, such that for all \(\beta \in \Omega\) there is some \(g \in G\) for which \(\alpha_0 g = \beta\).

 - The quasitransitive sub-\(\ell\)-pregroups of \(E(\Omega)\) are the building blocks of a structure theory.

 - The theory of \(\ell\)-permutation groups is well-developed and deep. The theory of \(\ell\)-pregroups which are not \(\ell\)-groups should be simpler.
A Holland-style representation for distributive ℓ-pregroups

- **Theorem**

 Every ℓ-pregroup is isomorphic to a sub-ℓ-pregroup of $E(\Omega)$ for some chain Ω.

 - If Ω has no covering pairs then $\text{End}(\Omega) = \text{Aut}(\Omega)$. In fact, if Ω has no integral points then $\text{End}(\Omega) = \text{Aut}(\Omega)$.
 - Every automorphism of $E(\Omega)$ must take integral points to integral points.
 - A sub-ℓ-pregroup $G \subseteq E(\Omega)$ is called **quasitransitive** if it has a point $\alpha_0 \in \Omega$, called the source, such that for all $\beta \in \Omega$ there is some $g \in G$ for which $\alpha_0 g = \beta$.
 - The quasitransitive sub-ℓ-pregroups of $E(\Omega)$ are the building blocks of a structure theory.
 - The theory of ℓ-permutation groups is well-developed and deep. The theory for ℓ-pregroups which are not ℓ-groups should be simpler.
An example

$$\Omega \equiv \mathbb{Z} \rightarrow \mathbb{Z}$$

$$(m, n) f \equiv \begin{cases} (2n, n) & \text{if } n \geq 1 \\ (2n - 1, n) & \text{if } n \leq 0 \end{cases}$$

$$(k, l) f' \equiv \begin{cases} \left(\frac{k}{2}, l\right) & \text{if } k \text{ is even and } l \geq 1 \\ \left(\frac{k}{2}, 0\right) & \text{if } k \text{ is even and } l \leq 0 \\ \left(\frac{k+1}{2}, l\right) & \text{if } k \text{ is odd and } l \leq 0 \\ \left(\frac{k+1}{2}, 0\right) & \text{if } k \text{ is odd and } l \geq 1 \end{cases}$$

f has no intervals of constancy but infinitely many lacunas in its range.

f' has infinitely many intervals of constancy and no lacunas in its range.
Thank you!