Distributive ℓ -Pregroups

R. Ball, N. Galatos, and P. Jipsen

5 August 2013

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{t}x \leq 1 \leq xx^{t}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- ► Alternatively, L is a residuated lattice such that x^{lr} = x = x^{rl} and (xy)^l = y^lx^l.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{t}x \leq 1 \leq xx^{t}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- ► Alternatively, L is a residuated lattice such that x^{lr} = x = x^{rl} and (xy)^l = y^lx^l.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{l}x \leq 1 \leq xx^{l}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{l}x \leq 1 \leq xx^{l}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{l}x \leq 1 \leq xx^{l}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{l}x \leq 1 \leq xx^{l}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{l}x \leq 1 \leq xx^{l}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{l}x \leq 1 \leq xx^{l}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- ► Alternatively, L is a residuated lattice such that x^{lr} = x = x^{rl} and (xy)^l = y^lx^l.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{l}x \leq 1 \leq xx^{l}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

Definition

- $\langle L, \cdot, 1 \rangle$ is a monoid,
- $\langle L, \lor, \land \rangle$ is a lattice,
- multiplication on either side preserves order,
- and $x^{l}x \leq 1 \leq xx^{l}$ and $xx^{r} \leq 1 \leq x^{r}x$.
- Alternatively, L is a residuated lattice such that $x^{lr} = x = x^{rl}$ and $(xy)^l = y^l x^l$.
- An ℓ -pregroup is distributive if it is distributive as a lattice.
- ► The variety of distributive *l*-pregroups has the variety of *l*-groups as an important subvariety. It is picked out by the equation x^l = x^r.
- ► The elements which satisfy the foregoing equation form an ℓ-group inside any ℓ-pregroup.

- ► A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an ℓ-pregroup modular?

► Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

•
$$da = (1 \land b)a = a \land ba \ge b$$

•
$$da = d(1 \lor c) = d \lor dc \leq c$$

- A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an ℓ-pregroup modular?

Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

•
$$da = (1 \land b)a = a \land ba \ge b$$

•
$$da = d(1 \lor c) = d \lor dc \leq c$$

- A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an *l*-pregroup modular?

Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

•
$$da = (1 \land b)a = a \land ba \ge b$$

•
$$da = d(1 \lor c) = d \lor dc \leq c$$

- A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an ℓ-pregroup modular?

► Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

•
$$da = (1 \land b)a = a \land ba \ge b$$

•
$$da = d(1 \lor c) = d \lor dc \leq c$$

- ► A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an *l*-pregroup modular?

► Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

Proof.

- $da = (1 \land b)a = a \land ba \ge b$
- $da = d(1 \lor c) = d \lor dc \le c$

- A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an *l*-pregroup modular?

► Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

- $da = (1 \land b)a = a \land ba \ge b$
- $da = d(1 \lor c) = d \lor dc \le c$

- A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an *l*-pregroup modular?

► Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

- $da = (1 \land b)a = a \land ba \ge b$
- $da = d(1 \lor c) = d \lor dc \le c$

- A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an *l*-pregroup modular?

► Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

- $da = (1 \land b)a = a \land ba \ge b$
- $da = d(1 \lor c) = d \lor dc \le c$

- ► A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an *l*-pregroup modular?

► Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

It suffices to prove this for pivot element 1.

• $da = (1 \land b)a = a \land ba \ge b$

•
$$da = d(1 \lor c) = d \lor dc \leq c$$

- ► A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an *l*-pregroup modular?

► Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

- $da = (1 \land b)a = a \land ba \ge b$
- $da = d(1 \lor c) = d \lor dc \le c$

- ► A modular *l*-pregroup is distributive. This fact first came to light as the result of a two-month run on an automated theorem prover. Peter has reduced this proof to a single page. Nevertheless, the proof remains opaque.
- ► Is an *l*-pregroup modular?

► Theorem

If a pregroup contains a pentagon then the pivot element cannot be invertible.

► Proof.

•
$$da = (1 \land b)a = a \land ba \ge b$$

•
$$da = d(1 \lor c) = d \lor dc \leq c$$

Theorem

An ℓ -semigroup wih right identity is distributive iff it can be embedding into $End(\Omega)$, the ℓ -monoid of order-preserving endomorphisms of some chain Ω .

- The question becomes which f ∈ End(Ω) have residuals f^l and f^r? Which have residuals of all orders?
- Note that f and f^l form a Galois pair, as do f and f^r. It follows that if both f^l and f^r exist then f must preserve all existing joins and meets in Ω.

Theorem

An ℓ -semigroup wih right identity is distributive iff it can be embedding into $End(\Omega)$, the ℓ -monoid of order-preserving endomorphisms of some chain Ω .

- The question becomes which f ∈ End(Ω) have residuals f^l and f^r? Which have residuals of all orders?
- Note that f and f^l form a Galois pair, as do f and f^r. It follows that if both f^l and f^r exist then f must preserve all existing joins and meets in Ω.

Theorem

An ℓ -semigroup wih right identity is distributive iff it can be embedding into $End(\Omega)$, the ℓ -monoid of order-preserving endomorphisms of some chain Ω .

- The question becomes which f ∈ End(Ω) have residuals f^l and f^r? Which have residuals of all orders?
- Note that f and f^l form a Galois pair, as do f and f^r. It follows that if both f^l and f^r exist then f must preserve all existing joins and meets in Ω.

Theorem

An ℓ -semigroup wih right identity is distributive iff it can be embedding into $End(\Omega)$, the ℓ -monoid of order-preserving endomorphisms of some chain Ω .

- The question becomes which f ∈ End(Ω) have residuals f^l and f^r? Which have residuals of all orders?
- Note that f and f^l form a Galois pair, as do f and f^r. It follows that if both f^l and f^r exist then f must preserve all existing joins and meets in Ω.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

・ロ と ・ 望 と ・ 聞 と ・ 聞 と

э.

And dually.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f'$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f' to both sides)
- $\beta = \beta 1 \leq \beta f f^{I} \leq \alpha f^{I}$.
- The argument for the converse is similar.
- The claim proves the theorem.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

・ロ と ・ 望 と ・ 聞 と ・ 聞 と

э.

And dually.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f'$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f' to both sides)
- $\beta = \beta 1 \leq \beta f f^{I} \leq \alpha f^{I}$.
- The argument for the converse is similar.
- The claim proves the theorem.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

・ロット (雪) (山) (日)

ж.

And dually.

Proof.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f^{I}$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f' to both sides)
- $\beta = \beta 1 \leq \beta f f^{I} \leq \alpha f^{I}$.
- The argument for the converse is similar.
- The claim proves the theorem.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

・ロット (雪) (山) (日)

ж.

And dually.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f^{I}$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f' to both sides)
- $\beta = \beta 1 \leq \beta f f^{I} \leq \alpha f^{I}$.
- The argument for the converse is similar.
- The claim proves the theorem.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

・ロ と ・ 望 と ・ 聞 と ・ 聞 と

And dually.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f'$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f' to both sides)
- $\beta = \beta 1 \leq \beta f f^{I} \leq \alpha f^{I}$.
- The argument for the converse is similar.
- The claim proves the theorem.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

・ロ と ・ 望 と ・ 聞 と ・ 聞 と

ж.

And dually.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f^{I}$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f^{I} to both sides)
- $\beta = \beta 1 \leq \beta f f^{I} \leq \alpha f^{I}$.
- The argument for the converse is similar.
- The claim proves the theorem.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

・ロ と ・ 望 と ・ 聞 と ・ 聞 と

And dually.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f'$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f^{I} to both sides)
- $\beta = \beta 1 \le \beta f f^{I} \le \alpha f^{I}$.
- The argument for the converse is similar.
- The claim proves the theorem.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

・ロ と ・ 望 と ・ 聞 と ・ 聞 と

And dually.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f'$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f' to both sides)
- $\beta = \beta 1 \leq \beta f f' \leq \alpha f'$.
- The argument for the converse is similar.
- The claim proves the theorem.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

And dually.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f'$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f' to both sides)
- $\beta = \beta 1 \leq \beta f f^{I} \leq \alpha f^{I}$.
- The argument for the converse is similar.
- The claim proves the theorem.

Theorem

An endomorphism $f \in End(\Omega)$ has a left residual f^{I} iff, for each $\alpha \in \Omega$, $\{\beta : \beta f \leq \alpha\}$ contains a greatest element. And in that case

$$\alpha f' = \bigvee_{\beta f \leq \alpha} \beta$$

・ロ と ・ 望 と ・ 聞 と ・ 聞 と

And dually.

- We claim that $\beta f \leq \alpha$ iff $\beta \leq \alpha f'$.
- Recall that $f'f \leq 1 \leq ff'$. Therefore
- $\beta f \leq \alpha$ implies (apply f' to both sides)
- $\beta = \beta 1 \leq \beta f f^{I} \leq \alpha f^{I}$.
- The argument for the converse is similar.
- The claim proves the theorem.
Two violations of the theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Endomorphisms with residuals must have coterminal range

- In order for an endomorphism f ∈ End(Ω) to have a left residual f¹, its range [Ω]f must be co-initial in Ω, i.e., for all α ∈ Ω there must be some β ∈ Ω such that βf ≤ α.
- In order for f^r to exist, the range of f must be cofinal in Ω, i.e., for all α ∈ Ω there must be some β ∈ Ω such that βf ≥ α.
- We say that the range of f is coterminal in Ω if it is both co-initial and cofinal.

Endomorphisms with residuals must have coterminal range

- In order for an endomorphism f ∈ End(Ω) to have a left residual f^l, its range [Ω]f must be co-initial in Ω, i.e., for all α ∈ Ω there must be some β ∈ Ω such that βf ≤ α.
- In order for f^r to exist, the range of f must be cofinal in Ω, i.e., for all α ∈ Ω there must be some β ∈ Ω such that βf ≥ α.
- We say that the range of f is coterminal in Ω if it is both co-initial and cofinal.

Endomorphisms with residuals must have coterminal range

- In order for an endomorphism f ∈ End(Ω) to have a left residual f^l, its range [Ω]f must be co-initial in Ω, i.e., for all α ∈ Ω there must be some β ∈ Ω such that βf ≤ α.
- In order for f^r to exist, the range of f must be cofinal in Ω, i.e., for all α ∈ Ω there must be some β ∈ Ω such that βf ≥ α.
- We say that the range of f is coterminal in Ω if it is both co-initial and cofinal.

Definition

Elements $\alpha, \beta \in \Omega$ form a *covering pair* if $\alpha < \beta$ and, for all γ , $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is *covered* by β . We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition

An *interval of constancy* of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

▶ Graph 1

Lemma

Definition

Elements $\alpha, \beta \in \Omega$ form a *covering pair* if $\alpha < \beta$ and, for all γ , $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is *covered* by β . We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition

An *interval of constancy* of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

▶ Graph 1

Lemma

Definition

Elements $\alpha, \beta \in \Omega$ form a *covering pair* if $\alpha < \beta$ and, for all γ , $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is *covered* by β . We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition

An *interval of constancy* of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

▶ Graph 1

Lemma

Definition

Elements $\alpha, \beta \in \Omega$ form a *covering pair* if $\alpha < \beta$ and, for all γ , $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is *covered* by β . We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition

An *interval of constancy* of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

▶ Graph 1

Lemma

Definition

Elements $\alpha, \beta \in \Omega$ form a *covering pair* if $\alpha < \beta$ and, for all γ , $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is *covered* by β . We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition

An *interval of constancy* of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

▶ Graph 1

Lemma

Definition

Elements $\alpha, \beta \in \Omega$ form a *covering pair* if $\alpha < \beta$ and, for all γ , $\alpha \leq \gamma \leq \beta$ implies $\gamma = \alpha$ or $\gamma = \beta$. We write $\alpha \prec \beta$, and we say that α is *covered* by β . We denote β by $\alpha + 1$ and to α as $\beta - 1$.

Definition

An *interval of constancy* of an endomorphism f is a convex subset $\Lambda \subseteq \Omega$ of cardinality at least 2 such that $\alpha f = \beta f$ for all $\alpha, \beta \in \Lambda$. Such an interval is said to be maximal if it is contained in no strictly larger interval of constancy.

▶ Graph 1

Lemma

Definition

A lacuna in the range of f is a nonempty convex subset $\Lambda \subseteq \Omega$ which is disjoint from the range of f. Such an interval is said to be maximal if it is contained in no strictly larger lacuna in the range of f.

▶ Graph 1

Lemma

Let f be an endomorphism for which both left and right residuals exist. Every point γ not in the range of f is contained in a maximal lacuna in the range of f. Then

$$\alpha \equiv \gamma f' \prec \gamma f' \equiv \beta$$
,

Definition

A lacuna in the range of f is a nonempty convex subset $\Lambda \subseteq \Omega$ which is disjoint from the range of f. Such an interval is said to be maximal if it is contained in no strictly larger lacuna in the range of f.

▶ Graph 1

Lemma

Let f be an endomorphism for which both left and right residuals exist. Every point γ not in the range of f is contained in a maximal lacuna in the range of f. Then

$$\alpha \equiv \gamma f' \prec \gamma f' \equiv \beta,$$

Definition

A lacuna in the range of f is a nonempty convex subset $\Lambda \subseteq \Omega$ which is disjoint from the range of f. Such an interval is said to be maximal if it is contained in no strictly larger lacuna in the range of f.

▶ Graph 1

Lemma

Let f be an endomorphism for which both left and right residuals exist. Every point γ not in the range of f is contained in a maximal lacuna in the range of f. Then

$$\alpha \equiv \gamma f' \prec \gamma f' \equiv \beta,$$

Definition

A lacuna in the range of f is a nonempty convex subset $\Lambda \subseteq \Omega$ which is disjoint from the range of f. Such an interval is said to be maximal if it is contained in no strictly larger lacuna in the range of f.

▶ Graph 1

Lemma

Let f be an endomorphism for which both left and right residuals exist. Every point γ not in the range of f is contained in a maximal lacuna in the range of f. Then

$$\alpha \equiv \gamma f' \prec \gamma f' \equiv \beta,$$

Lemma

Suppose f is an endomorphism whose second order residuals exist. Suppose also that $[\alpha, \beta]$ is a maximal interval of constancy of f. Then beta is covered and α is a cover.

► Proof.

(1) Suppose $[\alpha, \beta] \equiv \Lambda$ is a maximal interval of constancy of f, say $[\Lambda]f = \{\gamma\}$, and for argument's sake suppose α is not a cover, i.e., so that $\alpha = \bigvee \Delta$ for $\Delta \equiv \{\delta : \delta < \alpha\}$. Since both f and f'preserve order, we have $\bigvee_{\Delta} \delta f f' = \alpha f f' = \gamma f' = \beta$. We claim that $[\Delta]f$ has no greatest element. For if so, say $\delta f = \delta_1 f$ for some $\delta_1 < \alpha$ and all $\delta_1 < \delta < \alpha$, then f has another interval of constancy which includes $[\delta_1, \alpha)$ but is disjoint from $[\alpha, \beta]$. This contradicts the closure of maximal intervals of constancy and proves the claim.

Lemma

Suppose f is an endomorphism whose second order residuals exist. Suppose also that $[\alpha, \beta]$ is a maximal interval of constancy of f. Then beta is covered and α is a cover.

► Proof.

(1) Suppose $[\alpha, \beta] \equiv \Lambda$ is a maximal interval of constancy of f, say $[\Lambda]f = \{\gamma\}$, and for argument's sake suppose α is not a cover, i.e., so that $\alpha = \bigvee \Delta$ for $\Delta \equiv \{\delta : \delta < \alpha\}$. Since both f and f'preserve order, we have $\bigvee_{\Delta} \delta f f' = \alpha f f' = \gamma f' = \beta$. We claim that $[\Delta]f$ has no greatest element. For if so, say $\delta f = \delta_1 f$ for some $\delta_1 < \alpha$ and all $\delta_1 < \delta < \alpha$, then f has another interval of constancy which includes $[\delta_1, \alpha)$ but is disjoint from $[\alpha, \beta]$. This contradicts the closure of maximal intervals of constancy and proves the claim.

Lemma

Suppose f is an endomorphism whose second order residuals exist. Suppose also that $[\alpha, \beta]$ is a maximal interval of constancy of f. Then beta is covered and α is a cover.

Proof.

(1) Suppose $[\alpha, \beta] \equiv \Lambda$ is a maximal interval of constancy of f, say $[\Lambda]f = \{\gamma\}$, and for argument's sake suppose α is not a cover, i.e., so that $\alpha = \bigvee \Delta$ for $\Delta \equiv \{\delta : \delta < \alpha\}$. Since both f and f'preserve order, we have $\bigvee_{\Delta} \delta f f' = \alpha f f' = \gamma f' = \beta$. We claim that $[\Delta]f$ has no greatest element. For if so, say $\delta f = \delta_1 f$ for some $\delta_1 < \alpha$ and all $\delta_1 < \delta < \alpha$, then f has another interval of constancy which includes $[\delta_1, \alpha)$ but is disjoint from $[\alpha, \beta]$. This contradicts the closure of maximal intervals of constancy and proves the claim.

Lemma

Suppose f is an endomorphism whose second order residuals exist. Suppose also that $[\alpha, \beta]$ is a maximal interval of constancy of f. Then beta is covered and α is a cover.

► Proof.

(1) Suppose $[\alpha, \beta] \equiv \Lambda$ is a maximal interval of constancy of f, say $[\Lambda]f = \{\gamma\}$, and for argument's sake suppose α is not a cover, i.e., so that $\alpha = \bigvee \Delta$ for $\Delta \equiv \{\delta : \delta < \alpha\}$. Since both f and f'preserve order, we have $\bigvee_{\Delta} \delta f f' = \alpha f f' = \gamma f' = \beta$. We claim that $[\Delta]f$ has no greatest element. For if so, say $\delta f = \delta_1 f$ for some $\delta_1 < \alpha$ and all $\delta_1 < \delta < \alpha$, then f has another interval of constancy which includes $[\delta_1, \alpha)$ but is disjoint from $[\alpha, \beta]$. This contradicts the closure of maximal intervals of constancy and proves the claim.

What else can we say about lacunas in the range?

Lemma

Suppose f is an endomorphism whose second order residuals exist. Suppose also that $(\alpha f, \beta f), \alpha \prec \beta$, is a maximal lacuna in the range of f. Then αf is covered and βf is a cover.

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- (α − 1, β) is a maximal lacuna in the range of f¹, and every such lacuna arises in this fashion.
- (α, β + 1) is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.
- And vice-versa.

Lemma

- 1. $[\alpha, \beta 1]$ is a maximal interval of constancy for f^{I} , and every such interval arises in this fashion.
- 2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r , and every such interval arises in this fashion.

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- (α − 1, β) is a maximal lacuna in the range of f¹, and every such lacuna arises in this fashion.
- (α, β + 1) is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.
- And vice-versa.

Lemma

- 1. $[\alpha, \beta 1]$ is a maximal interval of constancy for f^{I} , and every such interval arises in this fashion.
- 2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r , and every such interval arises in this fashion.

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- (α − 1, β) is a maximal lacuna in the range of f¹, and every such lacuna arises in this fashion.
- (α, β + 1) is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.
- And vice-versa.

Lemma

- 1. $[\alpha, \beta 1]$ is a maximal interval of constancy for f^{I} , and every such interval arises in this fashion.
- 2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r , and every such interval arises in this fashion.

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- (α − 1, β) is a maximal lacuna in the range of f¹, and every such lacuna arises in this fashion.
- (α, β + 1) is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.
- And vice-versa.

Lemma

- 1. $[\alpha, \beta 1]$ is a maximal interval of constancy for f^{I} , and every such interval arises in this fashion.
- 2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r , and every such interval arises in this fashion.

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- (α − 1, β) is a maximal lacuna in the range of f¹, and every such lacuna arises in this fashion.
- (α, β + 1) is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.

And vice-versa.

Lemma

- 1. $[\alpha, \beta 1]$ is a maximal interval of constancy for f^{I} , and every such interval arises in this fashion.
- 2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r , and every such interval arises in this fashion.

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- (α − 1, β) is a maximal lacuna in the range of f¹, and every such lacuna arises in this fashion.
- (α, β + 1) is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.
- And vice-versa.
- Lemma Let $(\alpha, \beta) \equiv \Lambda$ be a maximal lacuna in the range of an endomorphism f having all its second residuals.
 - 1. $[\alpha, \beta 1]$ is a maximal interval of constancy for f^{I} , and every such interval arises in this fashion.
 - 2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r , and every such interval arises in this fashion.

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- (α − 1, β) is a maximal lacuna in the range of f¹, and every such lacuna arises in this fashion.
- (α, β + 1) is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.
- And vice-versa.
- Lemma Let $(\alpha, \beta) \equiv \Lambda$ be a maximal lacuna in the range of an endomorphism f having all its second residuals.
 - 1. $[\alpha, \beta 1]$ is a maximal interval of constancy for f^{I} , and every such interval arises in this fashion.
 - 2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r , and every such interval arises in this fashion.

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- (α − 1, β) is a maximal lacuna in the range of f¹, and every such lacuna arises in this fashion.
- (α, β + 1) is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.
- And vice-versa.

Lemma

- 1. $[\alpha, \beta 1]$ is a maximal interval of constancy for f^{I} , and every such interval arises in this fashion.
- 2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r , and every such interval arises in this fashion.

Lemma

Let $[\alpha, \beta] \equiv \Lambda$ be a maximal interval of constancy for an endomorphism f having all its second residuals.

- (α − 1, β) is a maximal lacuna in the range of f¹, and every such lacuna arises in this fashion.
- (α, β + 1) is a maximal lacuna in the range of f^r, and every such lacuna arises in this fashion.
- And vice-versa.

Lemma

- 1. $[\alpha, \beta 1]$ is a maximal interval of constancy for f^{I} , and every such interval arises in this fashion.
- 2. $[\alpha + 1, \beta]$ is a maximal interval of constancy for f^r , and every such interval arises in this fashion.

Definition

A point $\alpha \in \Omega$ is called *integral* if $\alpha + n$ exists in Ω for all $n \in \mathbb{Z}$.

Theorem

Definition

A point $\alpha \in \Omega$ is called *integral* if $\alpha + n$ exists in Ω for all $n \in \mathbb{Z}$.

Theorem

Definition

A point $\alpha \in \Omega$ is called *integral* if $\alpha + n$ exists in Ω for all $n \in \mathbb{Z}$.

Theorem

Definition

A point $\alpha \in \Omega$ is called *integral* if $\alpha + n$ exists in Ω for all $n \in \mathbb{Z}$.

Theorem

Definition

A point $\alpha \in \Omega$ is called *integral* if $\alpha + n$ exists in Ω for all $n \in \mathbb{Z}$.

Theorem

Which properties suffice?

Theorem

An endomorphism $f \in End(\Omega)$ has residuals of all orders iff it has these properties.

- The range of f is coterminal in Ω .
- ► For each $\alpha \in \Omega$, the set { $\beta : \beta f \leq \alpha$ } has a greatest element, and dually.
- Each maximal interval of constancy of f has the form [α, β], where α and β are integral points.
- Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

Theorem

The family of endomorphisms which satisfy these conditions, call it $E(\Omega)$, forms a distributive ℓ -pregroup. It is the unique largest ℓ -pregroup contained in End(Ω).

Which properties suffice?

► Theorem

An endomorphism $f \in End(\Omega)$ has residuals of all orders iff it has these properties.

- The range of f is coterminal in Ω .
- For each α ∈ Ω, the set {β : βf ≤ α} has a greatest element, and dually.
- Each maximal interval of constancy of f has the form [α, β], where α and β are integral points.
- Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

Theorem

The family of endomorphisms which satisfy these conditions, call it $E(\Omega)$, forms a distributive ℓ -pregroup. It is the unique largest ℓ -pregroup contained in End(Ω).

Which properties suffice?

► Theorem

An endomorphism $f \in End(\Omega)$ has residuals of all orders iff it has these properties.

- The range of f is coterminal in Ω .
- ► For each $\alpha \in \Omega$, the set { $\beta : \beta f \leq \alpha$ } has a greatest element, and dually.
- Each maximal interval of constancy of f has the form [α, β], where α and β are integral points.
- Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

Theorem

The family of endomorphisms which satisfy these conditions, call it $E(\Omega)$, forms a distributive ℓ -pregroup. It is the unique largest ℓ -pregroup contained in End(Ω).
► Theorem

An endomorphism $f \in End(\Omega)$ has residuals of all orders iff it has these properties.

- The range of f is coterminal in Ω .
- ► For each $\alpha \in \Omega$, the set { $\beta : \beta f \leq \alpha$ } has a greatest element, and dually.
- Each maximal interval of constancy of f has the form [α, β], where α and β are integral points.
- Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

Theorem

► Theorem

An endomorphism $f \in End(\Omega)$ has residuals of all orders iff it has these properties.

- The range of f is coterminal in Ω .
- For each α ∈ Ω, the set {β : βf ≤ α} has a greatest element, and dually.
- Each maximal interval of constancy of f has the form [α, β], where α and β are integral points.
- Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

Theorem

► Theorem

An endomorphism $f \in End(\Omega)$ has residuals of all orders iff it has these properties.

- The range of f is coterminal in Ω .
- ► For each $\alpha \in \Omega$, the set { $\beta : \beta f \leq \alpha$ } has a greatest element, and dually.
- Each maximal interval of constancy of f has the form [α, β], where α and β are integral points.
- Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

Theorem

► Theorem

An endomorphism $f \in End(\Omega)$ has residuals of all orders iff it has these properties.

- The range of f is coterminal in Ω .
- For each α ∈ Ω, the set {β : βf ≤ α} has a greatest element, and dually.
- Each maximal interval of constancy of f has the form [α, β], where α and β are integral points.
- Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

Theorem

► Theorem

An endomorphism $f \in End(\Omega)$ has residuals of all orders iff it has these properties.

- The range of f is coterminal in Ω .
- For each α ∈ Ω, the set {β : βf ≤ α} has a greatest element, and dually.
- Each maximal interval of constancy of f has the form [α, β], where α and β are integral points.
- Each maximal lacuna in the range of f has the form (α, β) for integral points α and β.

Theorem

Theorem

Every ℓ -pregroup is isomorphic to a sub- ℓ -pregroup of $E(\Omega)$ for some chain Ω .

- If Ω has no covering pairs then End(Ω) = Aut(Ω). In fact, if If Ω has no integral points then End(Ω) = Aut(Ω).
- Every automorphism of E(Ω) must take integeral points to integral points.
- A sub-ℓ-pregroup G ⊆ E(Ω) is called *quasitransitive* if it has a point α₀ ∈ Ω, called the source, such that for all β ∈ Ω there is some g ∈ G for which α₀g = β.
- The quasitransitive sub-*l*-pregroups of *E*(Ω) are the building blocks of a structure theory.
- ► The theory of *l*-permutation groups is well-developed and deep. The theory fof *l*-pregroups which are not *l*-groups should be simpler.

Theorem

Every ℓ -pregroup is isomorphic to a sub- ℓ -pregroup of $E(\Omega)$ for some chain Ω .

- If Ω has no covering pairs then End(Ω) = Aut(Ω). In fact, if If Ω has no integral points then End(Ω) = Aut(Ω).
- Every automorphism of E(Ω) must take integeral points to integral points.
- A sub-ℓ-pregroup G ⊆ E(Ω) is called *quasitransitive* if it has a point α₀ ∈ Ω, called the source, such that for all β ∈ Ω there is some g ∈ G for which α₀g = β.
- The quasitransitive sub-*l*-pregroups of *E*(Ω) are the building blocks of a structure theory.

► The theory of *l*-permutation groups is well-developed and deep. The theory fof *l*-pregroups which are not *l*-groups should be simpler.

Theorem

Every $\ell\text{-pregroup}$ is isomorphic to a sub- $\ell\text{-pregroup}$ of $E(\Omega)$ for some chain $\Omega.$

- If Ω has no covering pairs then End(Ω) = Aut(Ω). In fact, if
 If Ω has no integral points then End(Ω) = Aut(Ω).
- Every automorphism of E(Ω) must take integeral points to integral points.
- A sub-ℓ-pregroup G ⊆ E(Ω) is called *quasitransitive* if it has a point α₀ ∈ Ω, called the source, such that for all β ∈ Ω there is some g ∈ G for which α₀g = β.
- The quasitransitive sub-*l*-pregroups of *E*(Ω) are the building blocks of a structure theory.
- ► The theory of *l*-permutation groups is well-developed and deep. The theory fof *l*-pregroups which are not *l*-groups should be simpler.

► Theorem

Every $\ell\text{-pregroup}$ is isomorphic to a sub- $\ell\text{-pregroup}$ of $E(\Omega)$ for some chain $\Omega.$

- If Ω has no covering pairs then End(Ω) = Aut(Ω). In fact, if If Ω has no integral points then End(Ω) = Aut(Ω).
- Every automorphism of E(Ω) must take integeral points to integral points.
- A sub-ℓ-pregroup G ⊆ E(Ω) is called *quasitransitive* if it has a point α₀ ∈ Ω, called the source, such that for all β ∈ Ω there is some g ∈ G for which α₀g = β.
- The quasitransitive sub-*l*-pregroups of *E*(Ω) are the building blocks of a structure theory.
- ► The theory of *l*-permutation groups is well-developed and deep. The theory fof *l*-pregroups which are not *l*-groups should be simpler.

Theorem

Every $\ell\text{-pregroup}$ is isomorphic to a sub- $\ell\text{-pregroup}$ of $E(\Omega)$ for some chain $\Omega.$

- If Ω has no covering pairs then End(Ω) = Aut(Ω). In fact, if If Ω has no integral points then End(Ω) = Aut(Ω).
- Every automorphism of E(Ω) must take integeral points to integral points.
- A sub-ℓ-pregroup G ⊆ E(Ω) is called *quasitransitive* if it has a point α₀ ∈ Ω, called the source, such that for all β ∈ Ω there is some g ∈ G for which α₀g = β.
- The quasitransitive sub-*l*-pregroups of *E*(Ω) are the building blocks of a structure theory.

► The theory of *l*-permutation groups is well-developed and deep. The theory fof *l*-pregroups which are not *l*-groups should be simpler.

Theorem

Every $\ell\text{-pregroup}$ is isomorphic to a sub- $\ell\text{-pregroup}$ of $E(\Omega)$ for some chain $\Omega.$

- If Ω has no covering pairs then End(Ω) = Aut(Ω). In fact, if If Ω has no integral points then End(Ω) = Aut(Ω).
- Every automorphism of E(Ω) must take integeral points to integral points.
- A sub-ℓ-pregroup G ⊆ E(Ω) is called *quasitransitive* if it has a point α₀ ∈ Ω, called the source, such that for all β ∈ Ω there is some g ∈ G for which α₀g = β.
- The quasitransitive sub-*l*-pregroups of *E*(Ω) are the building blocks of a structure theory.

► The theory of *l*-permutation groups is well-developed and deep. The theory fof *l*-pregroups which are not *l*-groups should be simpler.

Theorem

Every ℓ -pregroup is isomorphic to a sub- ℓ -pregroup of $E(\Omega)$ for some chain Ω .

- If Ω has no covering pairs then End(Ω) = Aut(Ω). In fact, if If Ω has no integral points then End(Ω) = Aut(Ω).
- Every automorphism of E(Ω) must take integeral points to integral points.
- A sub-ℓ-pregroup G ⊆ E(Ω) is called *quasitransitive* if it has a point α₀ ∈ Ω, called the source, such that for all β ∈ Ω there is some g ∈ G for which α₀g = β.
- The quasitransitive sub-*l*-pregroups of *E*(Ω) are the building blocks of a structure theory.
- ► The theory of *l*-permutation groups is well-developed and deep. The theory fof *l*-pregroups which are not *l*-groups should be simpler.

An example

$$\Omega\equiv \mathbb{Z} \overrightarrow{\times} \mathbb{Z}$$

$$(m, n) f \equiv \begin{cases} (2n, n) & \text{if } n \ge 1\\ (2n-1, n) & \text{if } n \le 0 \end{cases}$$
$$(k, l) f' \equiv \begin{cases} \binom{k}{2}, l & \text{if } k \text{ is even and } l \ge 1\\ \binom{k}{2}, 0 & \text{if } k \text{ is even and } l \le 0\\ \binom{k+1}{2}, l & \text{if } k \text{ is odd and } l \le 0\\ \binom{k+1}{2}, 0 & \text{if } k \text{ is odd and } l \ge 1 \end{cases}$$

 \boldsymbol{f} has no intervals of constancy but infinitely many lacunas in its range.

 f^{I} has infinitely many intervals of constancy and no lacunas in its range.

Thank you!