Unification on Subvarieties of Pseudocomplemented lattices

Leonardo Manuel Cabrer

Università degli Studi di Firenze Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti" Marie Curie Intra-European Fellowship – FP7

BLAST - 2013

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition Duality Main Result Other Results

・ロト・西ト・山田・山田・山下

Algebraic Unification

[1] S. Ghilardi,

Unification through projectivity, *Journal of Logic and Comp.* **7**(6) 733-752, 1997. Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification

ragments of Heyting Igebras

-Lattices

Definition Duality Main Result Other Results

・ロト・西ト・山田・山田・山下

Algebraic Unification

 S. Ghilardi, Unification through projectivity, *Journal of Logic and Comp.* 7(6) 733-752, 1997.

Unification Problem: Finitely presented algebra A

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification

P-Lattices

Definition Duality Main Result Other Results

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Algebraic Unification

 S. Ghilardi, Unification through projectivity, *Journal of Logic and Comp.* 7(6) 733-752, 1997.

Unification Problem:	Finitely presented algebra A
Solution (Unifier):	$h \colon \mathcal{A} o \mathcal{P}$
	P is projective

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting

P-Lattices

Definition Duality Main Result Other Results

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Algebraic Unification

 S. Ghilardi, Unification through projectivity, *Journal of Logic and Comp.* 7(6) 733-752, 1997.

Unification Problem:Finitely presented algebra ASolution (Unifier): $h: A \rightarrow P$

Pre-order:

 $A \xrightarrow{h} P$ $\downarrow_{h'} \downarrow_{f}$ P'

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

P is projective

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting

P-Lattices

Algebraic Unification

Let $A \in \mathcal{V}$ a finitely presented algebra of a variety V and $\mathfrak{U}_{\mathcal{V}}(A)$ the pre-order of its unifiers. Then A is said to have unification type:

L.M. Cabrer

Introduction

Algebraic Unification

Fragments of Heyting algebras

P-Lattices

Definition Duality Main Result Other Result

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Algebraic Unification

1

Let $A \in \mathcal{V}$ a finitely presented algebra of a variety V and $\mathfrak{U}_{\mathcal{V}}(A)$ the pre-order of its unifiers. Then A is said to have unification type:

 $\mathfrak{U}_{\mathcal{V}}(A)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Unification on Subvarieties of Pseudocomple-

> mented lattices

L.M. Cabrer

Algebraic Unification

Algebraic Unification

Let $A \in \mathcal{V}$ a finitely presented algebra of a variety V and $\mathfrak{U}_{\mathcal{V}}(A)$ the pre-order of its unifiers. Then A is said to have unification type:

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification

Fragments of Heyting algebras

P-Lattices

Definition Duality Main Result Other Results

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Algebraic Unification

Let $A \in \mathcal{V}$ a finitely presented algebra of a variety V and $\mathfrak{U}_{\mathcal{V}}(A)$ the pre-order of its unifiers. Then A is said to have unification type:

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting

P Latticos

Definition Duality Main Result

Algebraic Unification

Let $A \in \mathcal{V}$ a finitely presented algebra of a variety V and $\mathfrak{U}_{\mathcal{V}}(A)$ the pre-order of its unifiers. Then A is said to have unification type:

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting

Algebraic Unification

A variety \mathcal{V} is said to have type:

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification

Fragments of Heyting algebras

P-Lattices

Definition Duality Main Result Other Result

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Algebraic Unification

A variety \mathcal{V} is said to have type:

 1 if every finitely presented A in V has unification type 1; Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting

D-Lattices

Definition Duality Main Result Other Results

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Algebraic Unification

A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in V has unification type 1;
- ω if every finitely presented A in V has finite unification type

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition Duality Main Result Other Results

・ロト・西・・田・・田・・日・

Algebraic Unification

A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in V has unification type 1;
- ω if every finitely presented A in V has finite unification type and at least one finitely presented A₀ in V has not unification type 1;

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Algebraic Unification

A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in V has unification type 1;
- ω if every finitely presented A in V has finite unification type and at least one finitely presented A₀ in V has not unification type 1;
- ➤ ∞ if every every finitely presented A of V has unification 1, n or ∞

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Algebraic Unification

A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in V has unification type 1;
- ω if every finitely presented A in V has finite unification type and at least one finitely presented A₀ in V has not unification type 1;
- ➤ if every every finitely presented A of V has unification 1, n or ∞ and at least one finitely presented A₀ in V has unification has type ∞;

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Algebraic Unification

A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in V has unification type 1;
- ω if every finitely presented A in V has finite unification type and at least one finitely presented A₀ in V has not unification type 1;
- ➤ of every every finitely presented A of V has unification 1, n or ∞ and at least one finitely presented A₀ in V has unification has type ∞;
- ► 0 if at least one finitely presented A₀ in V has unification type 0.

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Eroamont

Fragments of Heyting algebras

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification

Fragments of Heyting algebras

Flagment	Type		algebras
Heyting algebras	ω	(Ghilardi)	P-Lattices Definition Duality
Hilbert algebras	1	(Prucnal)	Main Result Other Results
Browerian semilattices	1	(Ghilardi)	
$(ightarrow, \neg)$ -Fragment	ω	(Cintula-Metcalfe)	
Bounded Distributive Lattices	0	(Ghilardi)	
Pseudocomplemented Lattices	0	(Ghilardi)	

Tung

Fragments of Heyting algebras: Bounded Distributive lattices

 S. Bova and LMC, Unification and Projectivity in De Morgan and Kleene Algebras Order (published online June 2013). Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

ntroduction

Algebraic Unification

Fragments of Heyting algebras

P-Lattices

Definition Duality Main Result

▲□▶▲□▶▲□▶▲□▶ = のへぐ

Fragments of Heyting algebras: Bounded Distributive lattices

 S. Bova and LMC, Unification and Projectivity in De Morgan and Kleene Algebras Order (published online June 2013).

Theorem

Let **L** be a finitely presented (equivalently finite) bounded distributive lattice and H(L) be its Priestley dual. Then the unification type of **L** is:

1 iff H(L) is a lattice;

finite iff for every $x, y \in H(L)$ the interval [x, y] is a lattice;

0 otherwise.

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

ntroduction

Algebraic Unification

Fragments of Heyting algebras

P-Lattices

An algebra $(A, \lor, \land, \neg, 0, 1)$ is a pseudocomplemented distributive lattice if $(A, \lor, \land, 0, 1)$ is a bounded distributive lattice and it satisfies

$$a \wedge b = 0 \quad \Leftrightarrow \quad a \leq \neg b$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

- H.A. Priestley, The construction of spaces dual to pseudocomplemented distributive lattices, *Quarterly Journal of Mathematics* Oxford Series. 26(2) (1975), 215–228.
- [3] A. Urquhart, Projective distributive p-algebras, Bulletin of the Australian Mathematical Society 24 (1981), 269–275.

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition

Duality Main Result Other Results

AlgebraSpaces $(L, \lor, \land, \neg, 0, 1)$ (X, \leq)

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Duality Main Result Other Results

AlgebraSpaces $(L, \lor, \land, \neg, 0, 1)$ (X, \le) HomomorphismsOrder preserving maps
commute with min

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Duality Main Result Other Besults

Spaces
(X,\leq)
Order preserving maps
(*) Join-Semilattice (J, \leq)
$\min \colon J o \mathcal{P}(J)$ is join preserving

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition

Duality Main Result Other Results

Algebraic UnifiersDual Unifiers $A \xrightarrow{h_1} P_1$ $R_1 \xrightarrow{\eta_1} Q$ h_2 f h_2 R_2

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Duality Main Result Other Results

Main Result

Definition Let (X, \leq) be a finite poset and

$$X' = \bigcup \{\eta(Y) \mid \eta \colon Y \to X \text{ and } Y \text{ satisfies } (*) \}.$$

Then the subposet $(X', \leq_{X'})$ with the order inherited from (X, \leq) is called the *unification core of* (X, \leq) .

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition Duality Main Result

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Main Result

Definition Let (X, \leq) be a finite poset and

$$X' = \bigcup \{ \eta(Y) \mid \eta \colon Y \to X \text{ and } Y \text{ satisfies } (*) \}.$$

Then the subposet $(X', \leq_{X'})$ with the order inherited from (X, \leq) is called the *unification core of* (X, \leq) .

Definition

Let (X, \leq) be a finite poset and $Y \subseteq X$. We say that Y is *connected* if it satisfies

(i) $\min(Y) \subseteq Y$;

(ii) for each $x, y \in Y$ there exists $z \in Y$ such that $x, y \leq z$ and $\min(x) \cup \min(y) = \min(z)$.

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Main Result

Theorem

Let A be a finitely presented pseudocomplemented lattice and (X, \leq) be it dual space. If X' is its unification core

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition Duality Main Result

Other Result

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Main Result

Theorem

Let A be a finitely presented pseudocomplemented lattice and (X, \leq) be it dual space. If X' is its unification core, then

$$\operatorname{Type}(\mathfrak{U}_{\mathcal{P}}(A)) = egin{cases} { ext{finite}} & { ext{if each } Y \in \max(\operatorname{Con}(X')),} \ & { ext{satisfies } (*)} \ 0 & { ext{otherwise};} \end{cases}$$

where $Con(X') \subseteq \mathcal{P}(X')$ denotes the family of conected subsets of $(X', \leq_{X'})$

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Sketch of the proof

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition

Duality

Main Result

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Other Results

 Classification of unification problems in each subvariety of pseudocomplemented algebras.

Variety	Туре
Boolean algebras	1
Stone Algebras	0
${\cal B}_n~(n\geq$ 2)	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition

Main Recu

Other Results

Unification on Subvarieties of Pseudocomplemented lattices

Thank you for your attention!

Unification on Subvarieties of Pseudocomplemented lattices

L.M. Cabrer

Introduction

Algebraic Unification Fragments of Heyting algebras

P-Lattices

Definition Duality Main Result Other Results

I.cabrer@disia.unifi.it

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの