Unification on Subvarieties of Pseudocomplemented lattices

Leonardo Manuel Cabrer

Università degli Studi di Firenze
Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”
Marie Curie Intra-European Fellowship – FP7

BLAST – 2013
Introduction

Algebraic Unification

Introduction
Algebraic Unification

[1] S. Ghilardi,
Unification through projectivity,

Unification Problem: Finitely presented algebra A
Introduction
Algebraic Unification

[1] S. Ghilardi,
Unification through projectivity,

Unification Problem: Finitely presented algebra A

Solution (Unifier): $h: A \rightarrow P$

P is projective

Unification Problem: Finitely presented algebra A

Solution (Unifier): $h: A \rightarrow P$

P is projective

Pre-order:

\[
\begin{array}{c}
A \\ \downarrow h' \\
\downarrow h \\
P \\ \downarrow f \\
P'
\end{array}
\]
Introduction

Algebraic Unification

Let $A \in V$ a finitely presented algebra of a variety V and $\mathcal{U}_V(A)$ the pre-order of its unifiers. Then A is said to have unification type:
Introduction

Algebraic Unification

Let $A \in \mathcal{V}$ a finitely presented algebra of a variety \mathcal{V} and $\mathcal{U}_\mathcal{V}(A)$ the pre-order of its unifiers. Then A is said to have unification type:

$$\mathcal{U}_\mathcal{V}(A)$$
Introduction

Algebraic Unification

Let \(A \in V \) a finitely presented algebra of a variety \(V \) and \(\mathcal{U}_V(A) \) the pre-order of its unifiers. Then \(A \) is said to have unification type:

\[\mathcal{U}_V(A) \]

\[\begin{array}{c}
1 \\
n
\end{array} \]
Introduction

Algebraic Unification

Let $A \in V$ a finitely presented algebra of a variety V and $\mathcal{U}_V(A)$ the pre-order of its unifiers. Then A is said to have unification type:
Introduction
Algebraic Unification

Let $A \in \mathcal{V}$ a finitely presented algebra of a variety V and $\mathcal{U}_V(A)$ the pre-order of its unifiers. Then A is said to have unification type:

$\mathcal{U}_V(A)$
Introduction
Algebraic Unification

A variety \mathcal{V} is said to have type:
A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in \mathcal{V} has unification type 1;

- ω if every finitely presented A in \mathcal{V} has finite unification type and at least one finitely presented A_0 in \mathcal{V} has unification type 1 and at least one finitely presented A_0 in \mathcal{V} has unification type ∞;

- ∞ if every finitely presented A in \mathcal{V} has unification type 1, n, or ∞ and at least one finitely presented A_0 in \mathcal{V} has unification type ∞;

- 0 if at least one finitely presented A_0 in \mathcal{V} has unification type 0.
Introduction
Algebraic Unification

A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in \mathcal{V} has unification type 1;
- ω if every finitely presented A in \mathcal{V} has finite unification type
Introduction
Algebraic Unification

A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in \mathcal{V} has unification type 1;
- ω if every finitely presented A in \mathcal{V} has finite unification type and at least one finitely presented A_0 in \mathcal{V} has not unification type 1;
A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in \mathcal{V} has unification type 1;
- ω if every finitely presented A in \mathcal{V} has finite unification type and at least one finitely presented A_0 in \mathcal{V} has not unification type 1;
- ∞ if every every finitely presented A of \mathcal{V} has unification 1, n or ∞
A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in \mathcal{V} has unification type 1;
- ω if every finitely presented A in \mathcal{V} has finite unification type and at least one finitely presented A_0 in \mathcal{V} has not unification type 1;
- ∞ if every every finitely presented A of \mathcal{V} has unification 1, n or ∞ and at least one finitely presented A_0 in \mathcal{V} has unification has type ∞;
A variety \mathcal{V} is said to have type:

- 1 if every finitely presented A in \mathcal{V} has unification type 1;
- ω if every finitely presented A in \mathcal{V} has finite unification type and at least one finitely presented A_0 in \mathcal{V} has not unification type 1;
- ∞ if every every finitely presented A of \mathcal{V} has unification 1, n or ∞ and at least one finitely presented A_0 in \mathcal{V} has unification has type ∞;
- 0 if at least one finitely presented A_0 in \mathcal{V} has unification type 0.
Introduction
Fragments of Heyting algebras

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heyting algebras</td>
<td>ω</td>
<td>(Ghilardi)</td>
</tr>
<tr>
<td>Hilbert algebras</td>
<td>1</td>
<td>(Prucnal)</td>
</tr>
<tr>
<td>Browerian semilattices</td>
<td>1</td>
<td>(Ghilardi)</td>
</tr>
<tr>
<td>(\to, \neg)-Fragment</td>
<td>ω</td>
<td>(Cintula-Metcalfe)</td>
</tr>
<tr>
<td>Bounded Distributive Lattices</td>
<td>0</td>
<td>(Ghilardi)</td>
</tr>
<tr>
<td>Pseudocomplemented Lattices</td>
<td>0</td>
<td>(Ghilardi)</td>
</tr>
</tbody>
</table>
Introduction

Fragments of Heyting algebras: Bounded Distributive lattices

Introduction
Fragments of Heyting algebras: Bounded Distributive lattices

Theorem
Let L be a finitely presented (equivalently finite) bounded distributive lattice and $H(L)$ be its Priestley dual. Then the unification type of L is:

1. 1 iff $H(L)$ is a lattice;
2. finite iff for every $x, y \in H(L)$ the interval $[x, y]$ is a lattice;
3. 0 otherwise.
Pseudocomplemented Lattices

Definition

An algebra \((A, \lor, \land, \neg, 0, 1)\) is a pseudocomplemented distributive lattice if \((A, \lor, \land, 0, 1)\) is a bounded distributive lattice and it satisfies

\[
a \land b = 0 \iff a \leq \neg b
\]
Pseudocomplemented Lattices

Duality

[2] H.A. Priestley,
The construction of spaces dual to pseudocomplemented distributive lattices,

[3] A. Urquhart,
Projective distributive p-algebras,
Pseudocomplemented Lattices

Duality

<table>
<thead>
<tr>
<th>Algebra</th>
<th>Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>((L, \lor, \land, \neg, 0, 1))</td>
<td>((X, \leq))</td>
</tr>
</tbody>
</table>
Pseudocomplemented Lattices

Duality

<table>
<thead>
<tr>
<th>Algebra</th>
<th>Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(L, \lor, \land, \neg, 0, 1)$</td>
<td>(X, \leq)</td>
</tr>
<tr>
<td>Homomorphisms</td>
<td>Order preserving maps commute with min</td>
</tr>
</tbody>
</table>
Pseudocomplemented Lattices

Duality

<table>
<thead>
<tr>
<th>Algebra</th>
<th>Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>((L, \lor, \land, \neg, 0, 1))</td>
<td>((X, \leq))</td>
</tr>
<tr>
<td>Homomorphisms</td>
<td>Order preserving maps commute with (\min)</td>
</tr>
<tr>
<td>Projective</td>
<td>((\ast)) Join-Semilattice ((J, \leq))</td>
</tr>
<tr>
<td></td>
<td>(\min: J \to \mathcal{P}(J))</td>
</tr>
<tr>
<td></td>
<td>is join preserving</td>
</tr>
</tbody>
</table>
Pseudocomplemented Lattices

Duality

Algebraic Unifiers

\[A \xrightarrow{h_1} P_1 \]
\[h_2 \downarrow \]
\[P_2 \]
\[h_\downarrow \]

Dual Unifiers

\[R_1 \xrightarrow{\eta_1} Q \]
\[\mu \uparrow \]
\[R_2 \]
\[\eta_2 \uparrow \]
Pseudocomplemented Lattices

Main Result

Definition
Let \((X, \leq)\) be a finite poset and

\[X' = \bigcup \{ \eta(Y) \mid \eta : Y \to X \text{ and } Y \text{ satisfies } (*) \} \).

Then the subposet \((X', \leq_{X'})\) with the order inherited from \((X, \leq)\) is called the unification core of \((X, \leq)\).
Definition
Let \((X, \leq)\) be a finite poset and

\[
X' = \bigcup\{\eta(Y) \mid \eta: Y \to X \text{ and } Y \text{ satisfies } (*)\}.
\]

Then the subposet \((X', \leq_{X'})\) with the order inherited from \((X, \leq)\) is called the \textit{unification core of } \((X, \leq)\).

Definition
Let \((X, \leq)\) be a finite poset and \(Y \subseteq X\). We say that \(Y\) is \textit{connected} if it satisfies

\[(i) \quad \min(Y) \subseteq Y;\]

\[(ii) \quad \text{for each } x, y \in Y \text{ there exists } z \in Y \text{ such that } x, y \leq z \text{ and } \min(x) \cup \min(y) = \min(z).\]
Pseudocomplemented Lattices

Main Result

Theorem

Let A be a finitely presented pseudocomplemented lattice and (X, \leq) be it dual space. If X' is its unification core

\[\text{Type}(U_P(A)) = \begin{cases} \text{finite} & \text{if each } Y \in \max(\text{Con}(X')), \\ 0 & \text{otherwise} \end{cases} \]

where $\text{Con}(X') \subseteq P(X')$ denotes the family of connected subsets of (X', \leq).
Theorem

Let A be a finitely presented pseudocomplemented lattice and (X, \leq) be its dual space. If X' is its unification core, then

$$\text{Type}(\mathcal{U}_P(A)) = \begin{cases}
\text{finite} & \text{if each } Y \in \max(\text{Con}(X')), \\
\text{satisfies } (\ast) & \\
0 & \text{otherwise};
\end{cases}$$

where $\text{Con}(X') \subseteq \mathcal{P}(X')$ denotes the family of connected subsets of $(X', \leq_{X'})$.
Pseudocomplemented Lattices

Sketch of the proof
Pseudocomplemented Lattices

Other Results

- Classification of unification problems in each subvariety of pseudocomplemented algebras.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean algebras</td>
<td>1</td>
</tr>
<tr>
<td>Stone Algebras</td>
<td>0</td>
</tr>
<tr>
<td>B_n ($n \geq 2$)</td>
<td>0</td>
</tr>
</tbody>
</table>
Unification on Subvarieties of Pseudocomplemented lattices

Thank you for your attention!

l.cabrer@disia.unifi.it