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Introduction
Algebraic Unification

[1] S. Ghilardi,
Unification through projectivity,
Journal of Logic and Comp. 7(6) 733-752, 1997.

Unification Problem: Finitely presented algebra A

Solution (Unifier): h : A→ P

P is projective

Pre-order: A h //

h′
��

P

f
��

P ′
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Introduction
Algebraic Unification
Let A ∈ V a finitely presented algebra of a variety V and
UV(A) the pre-order of its unifiers. Then A is said to have
unification type:

UV(A)

1

n

∞

0
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Introduction
Algebraic Unification

A variety V is said to have type:

I 1 if every finitely presented A in V has unification
type 1;

I ω if every finitely presented A in V has finite
unification type and at least one finitely presented A0
in V has not unification type 1;

I ∞ if every every finitely presented A of V has
unification 1, n or∞ and at least one finitely
presented A0 in V has unification has type∞;

I 0 if at least one finitely presented A0 in V has
unification type 0.
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Introduction
Fragments of Heyting algebras

Fragment Type

Heyting algebras ω (Ghilardi)
Hilbert algebras 1 (Prucnal)
Browerian semilattices 1 (Ghilardi)
(→,¬)-Fragment ω (Cintula-Metcalfe)
Bounded Distributive Lattices 0 (Ghilardi)
Pseudocomplemented Lattices 0 (Ghilardi)
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Introduction
Fragments of Heyting algebras: Bounded Distributive lattices

[4] S. Bova and LMC,
Unification and Projectivity in
De Morgan and Kleene Algebras
Order (published online June 2013).

Theorem
Let L be a finitely presented (equivalently finite) bounded
distributive lattice and H(L) be its Priestley dual. Then the
unification type of L is:

1 iff H(L) is a lattice;
finite iff for every x , y ∈ H(L) the interval [x , y ] is a lattice;

0 otherwise.
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Pseudocomplemented Lattices
Definition

An algebra (A,∨,∧,¬,0,1) is a pseudocomplemented
distributive lattice if (A,∨,∧,0,1) is a bounded distributive
lattice and it satisfies

a ∧ b = 0 ⇔ a ≤ ¬b
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Pseudocomplemented Lattices
Duality

[2] H.A. Priestley,
The construction of spaces dual to
pseudocomplemented distributive lattices,
Quarterly Journal of Mathematics
Oxford Series. 26(2) (1975), 215–228.

[3] A. Urquhart,
Projective distributive p-algebras,
Bulletin of the Australian Mathematical Society
24 (1981), 269–275.
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Duality

Algebra Spaces

(L,∨,∧,¬,0,1) (X ,≤)

Homomorphisms Order preserving maps
commute with min

Projective (∗) Join-Semilattice (J,≤)
min : J → P(J)

is join preserving
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Algebraic Unifiers Dual Unifiers

A
h1 //

h2 ��

P1

f
��

P2

R1
η1 // Q

R2

η2

??

µ

OO
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Pseudocomplemented Lattices
Main Result

Definition
Let (X ,≤) be a finite poset and

X ′ =
⋃
{η(Y ) | η : Y → X and Y satisfies (∗)}.

Then the subposet (X ′,≤X ′) with the order inherited from
(X ,≤) is called the unification core of (X ,≤).

Definition
Let (X ,≤) be a finite poset and Y ⊆ X . We say that Y is
connected if it satisfies

(i) min(Y ) ⊆ Y ;
(ii) for each x , y ∈ Y there exists z ∈ Y such that

x , y ≤ z and min(x) ∪min(y) = min(z).
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Main Result

Theorem
Let A be a finitely presented pseudocomplemented lattice
and (X ,≤) be it dual space. If X ′ is its unification core

,
then

Type(UP(A)) =


finite if each Y ∈ max(Con(X ′)),

satisfies (∗)
0 otherwise;

where Con(X ′) ⊆ P(X ′) denotes the family of conected
subsets of (X ′,≤X ′)
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Sketch of the proof

A

B C

D E
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Other Results

I Classification of unification problems in each
subvariety of pseudocomplemented algebras.

Variety Type

Boolean algebras 1
Stone Algebras 0
Bn (n ≥ 2) 0
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Thank you for your attention!

l.cabrer@disia.unifi.it
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