The finite embeddability property for some noncommutative knotted extensions of RL.

Riquelmi Cardona

University of Denver

BLAST 2013
Finite embeddability property

A class of algebras \(\mathcal{K} \) has the finite embeddability property (FEP) if for every \(A \in \mathcal{K} \), every finite partial subalgebra \(B \) of \(A \) can be embedded in a finite \(D \in \mathcal{K} \).
Finite embeddability property

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $A \in \mathcal{K}$, every finite partial subalgebra B of A can be embedded in a finite $D \in \mathcal{K}$.

A *residuated lattice*, is an algebra $L = (L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

1. (L, \wedge, \vee) is a lattice,
2. $(L, \cdot, 1)$ is a monoid and
3. for all $a, b, c \in L$, $ab \leq c \iff b \leq a \backslash c \iff a \leq c / b$.

RL denotes the variety of residuated lattices.
A (non-trivial) knotted axiom is an inequality of the form $x^m \leq x^n$ for $m \neq n$, $m \geq 1$, $n \geq 0$.
A (non-trivial) *knotted axiom* is an inequality of the form $x^m \leq x^n$ for $m \neq n$, $m \geq 1$, $n \geq 0$.

Some known examples of these include

- contraction $x \leq x^2$,
- mingle $x^2 \leq x$, and
- integrality $x \leq 1$.
Some Results

Theorem (Van Alten)

The variety of commutative residuated lattices axiomatized by a knotted axiom has the FEP.
Some Results

Theorem (Van Alten)

The variety of commutative residuated lattices axiomatized by a knotted axiom has the FEP.

Theorem

The variety of residuated lattices axiomatized by \(xyx = x^2 y \) and a knotted axiom \(x^m \leq x^n \) has the FEP.
Let’s start with

\[xyx = x^2y. \]
Let’s start with

\[xyx = x^2 y. \]

A similar equality is

\[xyx = yx^2. \]
Let’s start with

\[xyx = x^2y. \]

A similar equality is

\[xyx = yx^2. \]

The previous equalities can be represented by

\[xyx = x^{a_0} y x^{a_1}, \]
Let’s start with

\[xyx = x^2 y. \]

A similar equality is

\[xyx = yx^2. \]

The previous equalities can be represented by

\[xyx = x^{a_0} y x^{a_1}, \]

where \(a_0 + a_1 = 2 \) and \(a_0 a_1 = 0. \)
We consider the generalization

\[xy_1xy_2x \cdots xy_rx = x^{a_0}y_1x^{a_1}y_2x^{a_2} \cdots x^{a_{r-1}}y_rx^{a_r}, \]

(1)
Generalization

We consider the generalization

\[xy_1 x y_2 x \cdots x y_r x = x^{a_0} y_1 x^{a_1} y_2 x^{a_2} \cdots x^{a_{r-1}} y_r x^{a_r}, \]

(1)

where at least one of the \(a_i \)'s is equal to 0 and the sum of the \(a_i \)'s is \(r + 1 \).
Generalization

We consider the generalization

$$xy_1xy_2x \cdots xy_rx = x^{a_0} y_1 x^{a_1} y_2 x^{a_2} \cdots x^{a_{r-1}} y_r x^{a_r}, \quad (1)$$

where at least one of the a_i’s is equal to 0 and the sum of the a_i’s is $r + 1$.

Theorem

For $n > m \geq 1, r \geq 1$, the variety \mathcal{V}_r of residuated lattices axiomatized by (1) and a knotted axiom $x^m \leq x^n$ has the FEP.
Let B be a finite partial subalgebra of $A \in \mathcal{V}_r$. Consider $(W, \circ, 1)$, the submonoid of A generated by B.

The relation N is a nuclear relation, because it satisfies the condition $(x \circ y)Nz \iff yN(xz) \iff xNy(z)$. Then $W_{A,B} = (W, W', N, \circ, 1, \{1\})$ is a unital residuated frame.
Let B be a finite partial subalgebra of $A \in \mathcal{V}_r$. Consider $(W, \circ, 1)$, the submonoid of A generated by B.

We define S_W to be the set of *unary linear polynomial* (sections) of $(W, \circ, 1)$. Elements of S_W are of the form $u(_) = y \circ _ \circ w$ for $y, w \in W$. Let $W' = S_W \times B$, and define

$$xN(u, b) \text{ iff } u(x) \leq^A b$$
Let B be a finite partial subalgebra of $A \in \mathcal{V}_r$. Consider $(W, \circ, 1)$, the submonoid of A generated by B.

We define S_W to be the set of **unary linear polynomial** (sections) of $(W, \circ, 1)$. Elements of S_W are of the form $u(_) = y \circ _ \circ w$ for $y, w \in W$. Let $W' = S_W \times B$, and define

$$x N (u, b) \text{ iff } u(x) \leq^A b$$

We define $y \parallel (u, b) = \{(u(y \circ _), b)\}$ and $(u, b) \parallel y = \{(u(_ \circ y), b)\}$. The relation N is a nuclear relation, because it satisfies the condition

$$(x \circ y)N z \Leftrightarrow yN(x \parallel z) \Leftrightarrow xN(z \parallel y)$$

Then $W_{A,B} = (W, W', N, \circ, \parallel, \parallel, \{1\})$ is a unital residuated frame.
For $X \subseteq W$ and $Y \subseteq W'$ we define

\[X^\triangleright = \{ b \in W' : xNb, \text{ for all } x \in X \} \]
\[Y^\triangleleft = \{ a \in W : aNy, \text{ for all } y \in Y \} \]
Galois algebra

For $X \subseteq W$ and $Y \subseteq W'$ we define

$$X \triangleright = \{ b \in W' : xNb, \text{ for all } x \in X \}$$
$$Y \triangleleft = \{ a \in W : aNy, \text{ for all } y \in Y \}$$

$$\gamma_N : \mathcal{P}(W) \to \mathcal{P}(W), \quad \gamma_N(X) = X \triangleright \triangleleft,$$

is a closure operator.
For $X \subseteq W$ and $Y \subseteq W'$ we define

\[
X^{\triangleright} = \{ b \in W' : xNb, \text{ for all } x \in X \}
\]
\[
Y^{\triangleleft} = \{ a \in W : aNy, \text{ for all } y \in Y \}
\]

$\gamma_N : \mathcal{P}(W) \to \mathcal{P}(W)$, $\gamma_N(X) = X^{\triangleright\triangleleft}$, is a closure operator.

The Galois algebra of $W_{A,B}$ is

\[
W_{A,B}^{+} = (\gamma_N[\emptyset(W)], \cap, \cup \gamma_N, \circ \gamma_N, \setminus, /, \gamma_N(\{1\}))
\]

which is a complete residuated lattice.
The embedding

The map $b \mapsto \{(id, b)\}^\triangleleft$ is an embedding of the partial subalgebra B of A into $W^+_A B$ [Galatos, Jipsen].
The map $b \mapsto \{(id, b)\}^\triangleleft$ is an embedding of the partial subalgebra B of A into $W_{A,B}^+$ [Galatos, Jipsen].

Furthermore, $W_{A,B}^+$ and A belong to \mathcal{V}_k and the closed sets $\{(u, b)\}^\triangleleft$ for $u \in S_W, b \in B$ form a basis for $W_{A,B}^+$.
The setting

F is a pomonoid and h is an order preserving homomorphism. Furthermore, h is surjective and F is a well partially ordered set.
The setting

\[F \text{ is a pomonoid and } h \text{ is an order preserving homomorphism.} \]
\(\mathbf{F} \) is a pomonoid and \(h \) is an order preserving homomorphism. Furthermore, \(h \) is surjective and \(\mathbf{F} \) is a well partially ordered set.
A poset is said to be well partially ordered if it has no infinite antichains and no infinite descending chains. For instance, \(\langle \mathbb{N}, \leq \rangle \) is well partially ordered.
A poset is said to be \textit{well partially ordered} if it has no infinite antichains and no infinite descending chains. For instance, $\langle \mathbb{N}, \leq \rangle$ is well partially ordered.

If $\langle P, \leq \rangle$ is well partially ordered, then it is known that for each $k \in \mathbb{N}$, P^k is well partially ordered under the direct product ordering. Furthermore, homomorphic images, finite disjoint unions, and subposets of well partially ordered sets are well partially ordered.
A poset is said to be *well partially ordered* if it has no infinite antichains and no infinite descending chains. For instance, \(\langle \mathbb{N}, \leq \rangle \) is well partially ordered.

If \(\langle P, \leq \rangle \) is well partially ordered, then it is known that for each \(k \in \mathbb{N} \), \(P^k \) is well partially ordered under the direct product ordering. Furthermore, homomorphic images, finite disjoint unions, and subposets of well partially ordered sets are well partially ordered.

Consider the poset \(\langle P, \leq \rangle \). An infinite sequence \(p_1, p_2, \ldots \) of elements of \(P \) is called *bad* when \(i < j \) implies that \(p_i \nleq p_j \). Note that an infinitely descending chain or antichain would be a bad sequence. A poset is well partially ordered if and only if it has no bad sequences.
The proof

Assume that we have F and h satisfy the given conditions.
The proof

Assume that we have F and h satisfy the given conditions.
For each $b \in B$, define $C_b = \{(u, b)\}^{<} : u \in S_W \}$.
Assume that we have \(F \) and \(h \) satisfy the given conditions. For each \(b \in B \), define \(C_b = \{(u, b)\} : u \in S_W\).

Lemma

For each \(b \in B \), \(\langle C_b, \supseteq \rangle \) is well partially ordered.
Assume that we have F and h satisfy the given conditions.
For each $b \in B$, define $C_b = \{(u, b)\} : u \in S_W\}$.

Lemma

For each $b \in B$, $\langle C_b, \sqsupseteq \rangle$ is well partially ordered.

Proof.

$\langle C_b, \sqsupseteq \rangle$ is a homomorphic image of $\langle F^2, \leq^F \rangle$.
The proof

Assume that we have F and h satisfy the given conditions. For each $b \in B$, define $C_b = \{(u, b)\} : u \in S_W\}.$

Lemma

For each $b \in B$, $\langle C_b, \supseteq \rangle$ is well partially ordered.

Proof.

$\langle C_b, \supseteq \rangle$ is a homomorphic image of $\langle F^2, \leq^F \rangle.$ Define $\varphi : F^2 \to C_b$ by $\varphi(y, w) = \{(h(y) \circ_\circ h(w), b)\} \triangleleft. \varphi$ is surjective.
The proof

Assume that we have F and h satisfy the given conditions.

For each $b \in B$, define $C_b = \{ (u, b) \}^{\triangleleft} : u \in S_W \}.$

Lemma

For each $b \in B$, $\langle C_b, \supseteq \rangle$ is well partially ordered.

Proof.

$\langle C_b, \supseteq \rangle$ is a homomorphic image of $\langle F^2, \leq^F \rangle$. Define $\varphi : F^2 \rightarrow C_b$ by $\varphi(y, w) = \{ (h(y) \circ _ \circ h(w), b) \}^{\triangleleft}$. φ is surjective.

Let $(y_1, w_1), (y_2, w_2) \in F^2$ such that $(y_1, w_1) \leq^F (y_2, w_2)$
The proof

Assume that we have \(F \) and \(h \) satisfy the given conditions.

For each \(b \in B \), define \(C_b = \{(u, b)\}^\langle : u \in S_W \}. \)

Lemma

For each \(b \in B \), \(\langle C_b, \supseteq \rangle \) is well partially ordered.

Proof.

\(\langle C_b, \supseteq \rangle \) is a homomorphic image of \(\langle F^2, \leq^F \rangle \). Define \(\varphi : F^2 \rightarrow C_b \) by
\[
\varphi(y, w) = \{(h(y) \circ _{-} \circ h(w), b)\}^\langle. \quad \varphi \text{ is surjective.}
\]

Let \((y_1, w_1), (y_2, w_2) \in F^2\) such that \((y_1, w_1) \leq^F (y_2, w_2)\). For all \(x \in F \),
\[
y_1 \cdot^F x \cdot^F w_1 \leq^F y_2 \cdot^F x \cdot^F w_2 \quad \text{and} \quad h(y_1) \circ h(x) \circ h(w_1) \leq h(y_2) \circ h(x) \circ h(w_2).
\]
The proof

Assume that we have F and h satisfy the given conditions.

For each $b \in B$, define $C_b = \{(u, b)\}^{\triangledown} : u \in S_W\}$.

Lemma

For each $b \in B$, $\langle C_b, \triangledown \rangle$ is well partially ordered.

Proof.

$\langle C_b, \triangledown \rangle$ is a homomorphic image of $\langle F^2, \leq_F \rangle$. Define $\varphi : F^2 \to C_b$ by $\varphi(y, w) = \{(h(y) \circ \ _ \circ h(w), b)\}^{\triangledown}$. φ is surjective.

Let $(y_1, w_1), (y_2, w_2) \in F^2$ such that $(y_1, w_1) \leq_F (y_2, w_2)$. For all $x \in F$, $y_1 \cdot F x \cdot F w_1 \leq_F y_2 \cdot F x \cdot F w_2$ and $h(y_1) \circ h(x) \circ h(w_1) \leq h(y_2) \circ h(x) \circ h(w_2)$.

Now if $z \in \{(h(y_2) \circ \ _ \circ h(w_2), b)\}^{\triangledown}$, then $h(y_2) \circ h(x) \circ h(w_2) \leq b$. Hence $h(y_1) \circ h(x) \circ h(w_1) \leq b$ and $z = h(x) \in \{(h(y_1) \circ \ _ \circ h(w_1), b)\}^{\triangledown}$.
The proof

Assume that we have F and h satisfy the given conditions.

For each $b \in B$, define $C_b = \{(u, b)\}^\prec : u \in S_W\}.$

Lemma

For each $b \in B$, $\langle C_b, \supseteq \rangle$ is well partially ordered.

Proof.

$\langle C_b, \supseteq \rangle$ is a homomorphic image of $\langle F^2, \leq^F \rangle$. Define $\varphi : F^2 \to C_b$ by

$\varphi(y, w) = \{(h(y) \circ _\circ h(w), b)\}^\prec$. φ is surjective.

Let $(y_1, w_1), (y_2, w_2) \in F^2$ such that $(y_1, w_1) \leq^F (y_2, w_2)$. For all $x \in F$, $y_1 \cdot F x \cdot F w_1 \leq^F y_2 \cdot F x \cdot F w_2$ and $h(y_1) \circ h(x) \circ h(w_1) \leq h(y_2) \circ h(x) \circ h(w_2)$.

Now if $z \in \{(h(y_2) \circ _\circ h(w_2), b)\}^\prec$, then $h(y_2) \circ h(x) \circ h(w_2) \leq b$. Hence $h(y_1) \circ h(x) \circ h(w_1) \leq b$ and $z = h(x) \in \{(h(y_1) \circ _\circ h(w_1), b)\}^\prec$. So $\{(h(y_1) \circ _\circ h(w_1), b)\}^\prec \supseteq \{(h(y_2) \circ _\circ h(w_2), b)\}^\prec$. \square
The proof

\[\langle C_b, \supseteq \rangle \text{ has no infinite antichains or descending chains.} \]
The proof

\langle C_b, \supseteq \rangle has no infinite antichains or descending chains.

Lemma

\langle C_b, \supseteq \rangle has no infinite ascending chains.

Proof.

Assume there exists an infinite chain \((u_1, b) \supset \supset (u_2, b) \supset \ldots \) in \(C_b\).
The proof

\[\langle C_b, \supseteq \rangle \text{ has no infinite antichains or descending chains.} \]

Lemma

\[\langle C_b, \supseteq \rangle \text{ has no infinite ascending chains.} \]

Proof.

Assume there exists an infinite chain \(\{(u_1, b)\} \subset \supseteq \{(u_2, b)\} \subset \supseteq \ldots \) in \(C_b \).

For each \(i \in \mathbb{Z}^+ \), choose \(w_i \in \{(u_i, b)\} \subset \supseteq \{(u_{i+1}, b)\} \subset \supseteq \).
The proof

\[\langle C_b, \supseteq \rangle \] has no infinite antichains or descending chains.

Lemma

\[\langle C_b, \supseteq \rangle \] has no infinite ascending chains.

Proof.

Assume there exists an infinite chain \(\{(u_1, b)\} \supset \{(u_2, b)\} \supset \ldots \) in \(C_b \). For each \(i \in \mathbb{Z}^+ \), choose \(w_i \in \{(u_i, b)\} \supset \{(u_{i+1}, b)\} \). If for some \(i < j \) we have \(w_i \leq_A w_j \), then \(w_i \in \{(u_j, b)\} \).
The proof

\[\langle C_b, \supseteq \rangle \] has no infinite antichains or descending chains.

Lemma

\[\langle C_b, \supseteq \rangle \] has no infinite ascending chains.

Proof.

Assume there exists an infinite chain \(\{(u_1, b)\} \subset \{(u_2, b)\} \subset \ldots \) in \(C_b \). For each \(i \in \mathbb{Z}^+ \), choose \(w_i \in \{(u_i, b)\} \setminus \{(u_{i+1}, b)\} \). If for some \(i < j \) we have \(w_i \leq_A w_j \), then \(w_i \in \{(u_j, b)\} \). From \(\{(u_{i+1}, b)\} \supset \{(u_j, b)\} \), it follows that \(w_i \in \{(u_{i+1}, b)\} \).
The proof

\[\langle C_b, \supseteq \rangle \text{ has no infinite antichains or descending chains.} \]

Lemma

\[\langle C_b, \supseteq \rangle \text{ has no infinite ascending chains.} \]

Proof.

Assume there exists an infinite chain \(\{(u_1, b)\} \supset \{(u_2, b)\} \supset \ldots \) in \(C_b \). For each \(i \in \mathbb{Z}^+ \), choose \(w_i \in \{(u_i, b)\} \supset \{(u_{i+1}, b)\} \). If for some \(i < j \) we have \(w_i \preceq^A w_j \), then \(w_i \in \{(u_j, b)\} \). From \(\{(u_{i+1}, b)\} \supset \{(u_j, b)\} \), it follows that \(w_i \in \{(u_{i+1}, b)\} \). However, this contradicts the fact that \(w_i \in \{(u_i, b)\} \supset \{(u_{i+1}, b)\} \). We conclude that \(i < j \Rightarrow w_i \not\leq A w_j \) and \(w_1, w_2, \ldots \) is a bad sequence in \(W \), which contradicts the fact that \(F \) is well partially ordered.

\(C_b \) is finite for every \(b \in B \). Thus, there are finitely many sets \(\{(u, b)\} \).
The proof

\[\langle C_b, \supseteq \rangle \text{ has no infinite antichains or descending chains.} \]

Lemma

\[\langle C_b, \supseteq \rangle \text{ has no infinite ascending chains.} \]

Proof.

Assume there exists an infinite chain \(\{(u_1, b)\} \triangleleft \supseteq \{(u_2, b)\} \triangleleft \supseteq \ldots \) in \(C_b \). For each \(i \in \mathbb{Z}^+ \), choose \(w_i \in \{(u_i, b)\} \triangleleft \setminus \{(u_{i+1}, b)\} \triangleleft \). If for some \(i < j \) we have \(w_i \leq^A w_j \), then \(w_i \in \{(u_j, b)\} \triangleleft \). From \(\{(u_{i+1}, b)\} \triangleleft \supseteq \{(u_j, b)\} \triangleleft \), it follows that \(w_i \in \{(u_{i+1}, b)\} \triangleleft \). However, this contradicts the fact that \(w_i \in \{(u_i, b)\} \triangleleft \setminus \{(u_{i+1}, b)\} \triangleleft \). We conclude that \(i < j \implies w_i \not\leq^A w_j \) and \(w_1, w_2, \ldots \) is a bad sequence in \(W \).
\[\langle C_b, \supseteq \rangle \text{ has no infinite antichains or descending chains.} \]

Lemma

\[\langle C_b, \supseteq \rangle \text{ has no infinite ascending chains.} \]

Proof.

Assume there exists an infinite chain \(\{(u_1, b)\} \triangleleft \supseteq \{(u_2, b)\} \triangleleft \supseteq \ldots \) in \(C_b \). For each \(i \in \mathbb{Z}^+ \), choose \(w_i \in \{(u_i, b)\} \triangleleft \supseteq \{(u_{i+1}, b)\} \triangleleft \). If for some \(i < j \) we have \(w_i \leq^A w_j \), then \(w_i \in \{(u_j, b)\} \triangleleft \). From \(\{(u_{i+1}, b)\} \triangleleft \supseteq \{(u_j, b)\} \triangleleft \), it follows that \(w_i \in \{(u_{i+1}, b)\} \triangleleft \). However, this contradicts the fact that \(w_i \in \{(u_i, b)\} \triangleleft \supseteq \{(u_{i+1}, b)\} \triangleleft \). We conclude that \(i < j \implies w_i \not\leq^A w_j \) and \(w_1, w_2, \ldots \) is a bad sequence in \(W \), which contradicts the fact that \(F \) is well partially ordered. \(\square \)
The proof

\[\langle C_b, \supseteq \rangle \text{ has no infinite antichains or descending chains.} \]

Lemma

\[\langle C_b, \supseteq \rangle \text{ has no infinite ascending chains.} \]

Proof.

Assume there exists an infinite chain \(\{(u_1, b)\} \triangleleft \supseteq \{(u_2, b)\} \triangleleft \supseteq \ldots \) in \(C_b \). For each \(i \in \mathbb{Z}^+ \), choose \(w_i \in \{(u_i, b)\} \triangleleft \{(u_{i+1}, b)\} \triangleleft \). If for some \(i < j \) we have \(w_i \leq^A w_j \), then \(w_i \in \{(u_j, b)\} \triangleleft \). From \(\{(u_{i+1}, b)\} \triangleleft \supseteq \{(u_j, b)\} \triangleleft \), it follows that \(w_i \in \{(u_{i+1}, b)\} \triangleleft \). However, this contradicts the fact that \(w_i \in \{(u_i, b)\} \triangleleft \{(u_{i+1}, b)\} \triangleleft \). We conclude that \(i < j \implies w_i \not\leq^A w_j \) and \(w_1, w_2, \ldots \) is a bad sequence in \(W \), which contradicts the fact that \(F \) is well partially ordered.

\(C_b \) is finite for every \(b \in B \). Thus, there are finitely many sets \(\{(u, b)\} \triangleleft \).
The pomonoid F

Need to choose a good representation to obtain a well ordered set.
The pomonoid F

Need to choose a good representation to obtain a well ordered set.

We represent elements as \((\text{exponents}, \text{order of vars})\).
The pomonoid F

Need to choose a good representation to obtain a well ordered set.

We represent elements as \((\text{exponents}, \text{order of vars})\).

For instance, in the monoid on generators \(\{z_1, z_2, z_3, z_4, z_5\}\), \(z_5^3z_1^4z_3^2\) will be represented by \(((4, 0, 2, 0, 3), 513)\)
Need to choose a good representation to obtain a well ordered set.

We represent elements as \((\text{exponents, order of vars})\).

For instance, in the monoid on generators \(\{z_1, z_2, z_3, z_4, z_5\}\), \(z_5^3 z_1^4 z_3^2\) will be represented by \(((4, 0, 2, 0, 3), 513)\)

For that purpose we need to look at the defining equation and obtain information out of it.
For instance, consider the equation

\[xy_1 xy_2 xy_3 xy_4 xy_5 x = x^2 y_1 y_2 y_3 x^3 y_4 y_5 x. \]
Example

For instance, consider the equation

\[xy_1 xy_2 xy_3 xy_4 xy_5 x = x^2 y_1 y_2 y_3 x^3 y_4 y_5 x. \]

We can use it rewrite expressions like

\[xy_1 xy_2 xy_3 xy_4 xy_5 xy_6 xy_7 xy_8 xy_9 x = (x^2 y_1 y_2 y_3 x^3 y_4 y_5 x) y_6 xy_7 xy_8 xy_9 x \]
Example

For instance, consider the equation

\[xy_1xy_2xy_3xy_4xy_5x = x^2y_1y_2y_3x^3y_4y_5x. \]

We can use it rewrite expressions like

\[xy_1xy_2xy_3xy_4xy_5xy_6xy_7xy_8xy_9x = (x^2y_1y_2y_3x^3y_4y_5x)y_6xy_7xy_8xy_9x \]
\[= x^6y_1y_2y_3x^3y_4y_5y_6y_7y_8y_9x \]

In general, we can gather generators together when we have enough of them.
For instance, consider the equation

\[xy_1xy_2xy_3xy_4xy_5x = x^2y_1y_2y_3x^3y_4y_5x. \]

We can use it rewrite expressions like

\[xy_1xy_2xy_3xy_4xy_5xy_6xy_7xy_8xy_9x = (x^2y_1y_2y_3x^3y_4y_5x)y_6xy_7xy_8xy_9x \]
\[= x^6y_1y_2y_3x^3y_4y_5y_6y_7y_8y_9x \]
\[= xx^8y_1y_2y_3y_4y_5y_6y_7y_8y_9x \]

In general, we can gather generators together when we have enough of them.
Further work
Thank you for your attention.