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Initial Structures in Tukey types of p-points

In joint work with Jose Mijares and Timothy Trujillo we

1 Give a general method for constructing new topological Ramsey
spaces. These have associated ultrafilters which are p-points
satisfying weak partition properties.

2 Prove general Ramsey-classification theorems for equivalence relations
on barriers on these types of spaces.

3 Classify all isomorphism classes within the Tukey types of ultrafilters
Tukey reducible to the associated ultrafilter.

4 Find initial structures in the Tukey types of p-points.
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Motivation: What is the Tukey Structure of Ultrafilters?

Let U ,V be ultrafilters.

Def. X ⊆ U is cofinal in (U ,⊇) iff for each U ∈ U , there is an X ∈ X
such that X ⊆ U; i.e. X is a filter base for U .

Def. V is Tukey reducible to U (V ≤T U) ⇔ there is a cofinal map from
U into V: ∃f : U → V mapping each base for U to a base for V.
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The Top of Tukey: Isbell’s Problem

Thm. [Isbell 65, Juhász 67] There is an ultrafilter Utop which has
maximal Tukey type: (Utop,⊇) ≡T ([c]<ω,⊆).

Note. The Tukey type of Utop has cardinality 2c.

Question [Isbell 65]. Is it consistent with ZFC that all ultrafilters have
top Tukey type?
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Not Top of Tukey: P-Points

Def. U is a p-point if for each decreasing sequence U0 ⊇ U1 ⊇ . . . in U ,
there is a Y ∈ U such that for each n < ω, Y ⊆∗ Un

(i.e. ∀n, |Y \ Un| < ω).

A Key Thm. [D/Todorcevic 11] If U is a p-point and V ≤T U , then
there is a continuous monotone cofinal map witnessing this.

Cor. Every p-point is not Tukey top and has Tukey type of cardinality
c.
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The Bottom of Tukey: Ramsey Ultrafilters

Def. An ultrafilter U is Ramsey if for each c : [ω]2 → 2, there is a
U ∈ U such that c is monochromatic on [U]2.

Thm. [Todorcevic in [Raghavan/Todorcevic 12]] If U is Ramsey, V is
non-principal, and V ≤T U , then V is isomorphic to a Fubini iterate of
U .

Def. The Fubini product of W and Vn, n < ω, is

lim
n→W

Vn = {X ⊆ ω × ω :Wn (X )n ∈ Vn}

Proof uses: Continuous cofinal maps theorem of [D/T 11] and
Pudlák-Rödl Canonization Theorem.
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What can we say about the structure of non-Ramsey ultrafilters near the
bottom of the Tukey hierarchy?
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Background: Initial Structures of Descending Chains

Thm. [D/Todorcevic] For each α < ω1, there are decreasing chains of
p-points (satisfying weak partition properties) of order type (α+ 1)∗ as
initial structures in the Tukey hierarchy.

This was proved by

1 constructing new topological Ramsey spaces, Rα, α < ω1, dense in
Laflamme’s forcings,

2 proving Ramsey-classification theorems for equivalence relations
on barriers (extending the Pudlák-Rödl Theorem),

3 and applying them to decode the isomorphism types within the
Tukey types of associated ultrafilters, thus also obtaining the
Tukey structure.
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Guiding Questions

1 Can topological Ramsey spaces provide a general framework for
ultrafilters satisfying weak partition properties?

2 What other structures (besides descending chains of order type
(α + 1)∗) appear as initial structures in Tukey types of ultrafilters?
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Simplest Topological Ramsey Space: The Ellentuck Space

Example. Ellentuck space [ω]ω. Y ≤ X iff Y ⊆ X .
Basis for topology: [s,X ] = {Y ∈ [ω]ω : s @ Y ⊆ X}.

Def. X ⊆ [ω]ω is Ramsey iff for each [s,X ], there is s @ Y ⊆ X such
that either [s,Y ] ⊆ X or [s,Y ] ∩ X = ∅.

Associated Ultrafilter: Ramsey ultrafilter forced by ([ω]ω,≤∗).

Thm. [Ellentuck 1974] Every X ⊆ [ω]ω with the property of Baire (in
the Ellentuck topology) is Ramsey.

Galvin-Prikry Theorem: All (metrically) Borel sets are Ramsey.
Silver Theorem: All (metrically) Suslin sets are Ramsey.
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Topological Ramsey spaces (R,≤, r)

r is a finite approximation function.
n-th Appproximations: ARn = {rn(X ) : X ∈ R}.
Finite Approximations: AR =

⋃
n<ωARn.

Basic open sets: [a,A] = {X ∈ R : a @ X ≤ A}.

Def. X ⊆ R is Ramsey iff for each ∅ 6= [a,A], there is a B ∈ [a,A] such
that either [a,B] ⊆ X or [a,B] ∩ X = ∅.

Def. A triple (R,≤, r) is a topological Ramsey space if every subset of
R with the Baire property is Ramsey, and if every meager subset of R
is Ramsey null.

Abstract Ellentuck Theorem. [Todorcevic] If (R,≤, r) satisfies A.1 -
A.4 and R is closed (in ARN), then (R,≤, r) is a topological Ramsey
space.
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Topological Ramsey Space R1, [D/Todorcevic]

T1

〈 〉

〈0〉 〈1〉 〈2〉 〈3〉 〈4〉 〈5〉
. . .

〈0,
0〉

〈1,
1〉

〈1,
2〉

〈2,
3〉

〈2,
4〉

〈2,
5〉

〈3,
6〉

〈3,
7〉

〈3,
8〉

〈3,
9〉

〈4,
10
〉

〈4,
11
〉

〈4,
12
〉

〈4,
13
〉

〈4,
14
〉

〈5,
15
〉

〈5,
16
〉

〈5,
17
〉

〈5,
18
〉

〈5,
19
〉

〈5,
20
〉

X ∈ R1 iff X is a subtree of T1 and X ∼= T1.
For X ,Y ∈ R1, Y ≤ X iff Y ⊆ X .
Associated Ultrafilter: weakly Ramsey ω → [U ]23
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The space R2, [D/Todorcevic]

T2

〈 〉

〈0, 0〉 〈1, 1〉 〈2, 2〉 〈2, 3〉 〈3, 4〉 〈3, 5〉 〈3, 6〉

〈0〉 〈1〉 〈2〉
〈3〉

. . .

〈0,
0,
0〉

〈1,
1,
1〉

〈1,
1,
2〉

〈2,
2,
3〉

〈2,
2,
4〉

〈2,
2,
5〉

〈2,
3,
6〉

〈2,
3,
7〉

〈2,
3,
8〉

〈2,
3,
9〉

〈3,
4,
10
〉

〈3,
4,
11
〉

〈3,
4,
12
〉

〈3,
4,
13
〉

〈3,
4,
14
〉

〈3,
5,
15
〉

〈3,
5,
16
〉

〈3,
5,
17
〉

〈3,
5,
18
〉

〈3,
5,
19
〉

〈3,
5,
20
〉

〈3,
6,
21
〉

〈3,
6,
22
〉

〈3,
6,
23
〉

〈3,
6,
24
〉

〈3,
6,
25
〉

〈3,
6,
26
〉

〈3,
6,
27
〉

X ∈ R2 iff X is a subtree of T2 and X ∼= T2.
For X ,Y ∈ R2, Y ≤ X iff Y ⊆ X .
Associated Ultrafilter: ω → [U ]24
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General Constructions of Topological Ramsey Spaces,
[D/Mijares/Trujillo]

Axioms A.1 - A.4 plus two more axioms B.1 and B.2.

Idea: Members of R are Tree Structures with Level 1 = Ellentuck

Trees of Height 2:
Level 2: Finite products of finite ordered relational structures from a
Fräıssé class with the Ramsey Property.

General: Unbounded Height Well-founded “Trees”:
Subsequent levels formed by vertical gluing of finite products of finite
ordered relational structures from a Fräıssé class with the Ramsey
Property. (In progress.)
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Examples: Ultrafilters from this tRs Construction Method

1 k-arrow not k + 1-arrow ultrafilters of Baumgartner and Taylor, using
finite ordered k + 1-clique free graphs growing so as to have the
Ramsey Property (possible by Nešeťril-Rödl Theorem).

Partition Property of Associated Ultrafilter: ω → (U , k)2, and
ω 6→ (U , k + 1)2.

2 Squares: H2

Partition Property of Associated Ultrafilter: ω → [U ]26.

3 Cubes: H3

Partition Property of Associated Ultrafilter: ω → [U ]215.

4 R1 ∗ H2.

Partition Property of Associated ultrafilter: ω → [U ]27.
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Applications: Initial Structures in Tukey Types

Thm. [D/Mijares/Trujillo] The ultrafilters associated to topological
Ramsey spaces formed as prescribed above determine initial structures
of the Tukey types of ultrafilters, including

Finite Boolean algebras P(n) (from Hn and similar spaces).

In the process of being fleshed out: P(ω), and many lattices (from
general glued structures).

The proof depends on new Ramsey-classification theorems for
equivalence relations on fronts.
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Ramsey Theory

Ramsey Theorem. For each k , n ≥ 1 and coloring c : [ω]k → n, there
is an infinite M ⊆ ω such that c restricted to [M]k monochromatic.

Erdős-Rado Canonization Theorem. For each k ≥ 1 and each
equivalence relation E on [ω]k , there is an infinite M ⊆ ω such that
E � [M]k is canonical,

i.e. E � [M]k is given by Ek
I for some I ⊆ k .

For a, b ∈ [ω]k , a Ek
I b iff ∀i ∈ I , ai = bi .

Note. The Erdős-Rado Theorem is a canonization theorem for the
fronts (barriers) of the form [ω]k on the Ellentuck space.
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Product Erdős-Rado Theorem

Thm. [D/Mijares/Trujillo] Suppose R is a topological Ramsey space of
Trees of Height 2 (where blocks consist of a product of m many Fräıssé
classes of ordered relational structures with the Ramsey property).
Suppose E is an equivalence relation on the n-th blocks of members of
R coming from within one block in the maximal tree.

Then there is an X ∈ R and Ik ⊆ |Ak(n)|, k < m, such that
E = E(I0,...,Im−1) when restricted to X .

Remark. Only the order matters - the structure is irrelevant to the
canonical equivalence relations.

Example. The 2-nd blocks of H2 consist of all 3× 3 squares coming
from within one square in the maximal tree. These are products of 2
linearly ordered sets. The canonical equivalence relations are given by
all products I0 × I1, where I0, I1 ⊆ {0, 1, 2}.
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Fronts, Barriers, and Irreducible Functions on Ellentuck

Def. F ⊆ [ω]<ω is a front on [ω]ω iff

(i) ∀X ∈ [ω]ω, ∃a ∈ F such that a @ X ; and

(ii) for a, b ∈ F , a 6@ b.

Def. For a front F , a map ϕ : F → N is irreducible if ϕ is

(a) inner, i.e. ϕ(a) ⊆ a for all a ∈ F , and

(b) Nash-Williams, i.e. for each a, b ∈ F , ϕ(a) 6@ ϕ(b).

Dobrinen, Mijares, Trujillo Ramsey spaces and Tukey University of Denver 20 / 23



Fronts, Barriers, and Irreducible Functions on Ellentuck

Def. F ⊆ [ω]<ω is a front on [ω]ω iff

(i) ∀X ∈ [ω]ω, ∃a ∈ F such that a @ X ; and

(ii) for a, b ∈ F , a 6@ b.

Def. For a front F , a map ϕ : F → N is irreducible if ϕ is

(a) inner, i.e. ϕ(a) ⊆ a for all a ∈ F , and

(b) Nash-Williams, i.e. for each a, b ∈ F , ϕ(a) 6@ ϕ(b).

Dobrinen, Mijares, Trujillo Ramsey spaces and Tukey University of Denver 20 / 23



Generalization of Erdős-Rado Theorem

Pudlak-Rödl Canonization Thm. For every front (barrier) F on ω and
every equivalence relation E on F , there is an infinite M ⊆ ω such that
E � (F|M) is represented by an irreducible mapping defined on F|M.

Def. F|M = {a ∈ F : a ⊆ M}.
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Fronts and Irreducible Functions on R

Def. F ⊆ AR is a front on R iff

(i) ∀X ∈ R, ∃a ∈ F such that a @ X ; and

(ii) for a, b ∈ F , a 6@ b.

Def. For a front F , a map ϕ : F → N is irreducible if ϕ is

(a) inner, i.e. ϕ(a) ⊆ a for all a ∈ F , and

(b) Nash-Williams, i.e. for each a, b ∈ F , ϕ(a) 6@ ϕ(b).

Def. Let E be an equivalence relation on a front F .

1 ϕ represents E iff for all a, b ∈ F , aEb iff ϕ(a) = ϕ(b).

2 E is canonical iff E is represented by a maximal inner
Nash-Williams function ϕ.
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Extensions of the Pudlak-Rödl Theorem

Ramsey-Classification Theorems [D/Mijares/Trujillo] for a general
class of topological Ramsey spaces; ([D/Todorcevic] for Rα, α < ω1):

Given any front F on R and equivalence relation E on F , there is an
X ∈ R such that E � (F|X ) is canonical.

Rem. Ramsey-classification theorems, along with continuous cofinal
maps, are used to decode the isomorphism types within Tukey types of
related ultrafilters; hence also the Tukey structure.

Dobrinen, Mijares, Trujillo Ramsey spaces and Tukey University of Denver 23 / 23



Extensions of the Pudlak-Rödl Theorem
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