Prospects for a reverse analysis of topology

François G. Dorais

Dartmouth College

BLAST 2013

Reverse mathematics

The program of reverse mathematics aims to figure out which axioms are necessary to prove theorems of everyday mathematics.

The axioms systems traditionally used are subsystems of second-order arithmetic. These are two-sorted systems with a number sort and a set sort. The number sort obeys the usual axioms for basic arithmetic (PA^-) .

- RCA₀ is the base system it has just enough comprehension to show that sets are closed under relative computability
- ACA₀ adds comprehension for arithmetic formulas (without set quantifiers but maybe with set parameters)
- Π_1^1 -CA₀ adds comprehension for Π_1^1 -formulas (of the form $\forall X \phi(n, X)$ where ϕ is arithmetic)

All systems include induction for Σ_1^0 -formulas

Fundamental problem

Second-order arithmetic has two layers of objects — numbers and sets — but topology usually works with three layers:

points

open sets, closed sets, etc.

covers, filters, etc.

Other approaches

- Complete separable metric spaces are well understood¹
- Mummert studied maximal filter spaces as a more general notion of topological spaces²
- Hunter studied general topological spaces in systems of arithmetic with higher types and atoms³

¹S. Simpson, *Subsystems of second order arithmetic*, 2nd ed., Cambridge University Press, Cambridge, 2009. DOI:10.1017/CBO9780511581007

²C. Mummert, *Reverse mathematics of MF spaces*, Journal of Mathematical Logic **6** (2007), 203–232. DOI:10.1142/S0219061306000578.

³J. Hunter, *Higher-order reverse topology*, Ph.D. Thesis, University of Wisconsin–Madison, 2008.

Contents

1 Point-set approach

2 Point-free approach

3 Other base systems

Contents

1 Point-set approach

2 Point-free approach

3 Other base systems

Point-set approach

Idea:

- Points are a set of numbers
- Basic opens are an indexed sequence of esets of points
- Collections of indices are used to code higher order objects

Caveat:

■ Limited to countable second-countable spaces

Bases

An **effective base** on a set X is a uniformly enumerable family $\mathcal{B} = (B_i)_{i \in \mathbb{N}}$ of esets for which there are partial functions $\alpha: X \to \mathbb{N}$ and $\beta: X \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that

$$x \in B_{\alpha(x)}$$

and

$$x \in B_i \cap B_j \Longrightarrow x \in B_{\beta(x,i,j)} \subseteq B_i \cap B_j.$$

Note: If $A = (A_j)_{j \in \mathbb{N}}$ is any uniformly enumerable family then

$$B_s = \bigcap_{j \in s} A_j, \quad s \in \mathbf{N}^{[<\infty]},$$

is an effective base that generates the same topology on X.

Opens

A **CSC** space \mathcal{X} is a set X equipped with an effective base \mathcal{B}^X .

An **open** in \mathcal{X} is an eset $U \subseteq X$ such that for each $x \in U$ there is a basic open B_i such that $x \in B_i \subseteq U$.

An **effective open** in $\mathcal X$ is an eset $U\subseteq X$ for which there is a partial function $\gamma:X\to \mathbf N$ such that

$$x \in U \Longrightarrow x \in B_{\gamma(x)} \subseteq U$$
.

An (effective) closed in X is the complement of an (effective) open.

Continuity

Let $\mathfrak X$ and $\mathfrak Y$ be CSC spaces.

A function $f: X \to Y$ is **continuous** if any of the following equivalent conditions hold:

- $f^{-1}[G]$ is open in \mathfrak{X} for every open G in \mathfrak{Y} .
- $f^{-1}[B_j^Y]$ is open in \mathfrak{X} for every basic open B_j^Y .
- when $f(x) \in B_j^Y$ there is a basic open B_i^X such that

$$x \in B_i^X \subseteq f^{-1}[B_j^Y].$$

A function $f: X \to Y$ is **effectively continuous** if there is a partial function $\phi: X \times \mathbf{N} \to \mathbf{N}$ such that

$$f(x) \in B_i^Y \Longrightarrow x \in B_{\phi(x,i)}^X \subseteq f^{-1}[B_i^Y].$$

Compactness

An **open cover** of \mathcal{X} is an uniformly enumerable family of open sets $(U_j)_{j\in \mathbb{N}}$ such that $X=\bigcup_{j\in \mathbb{N}} U_j$.

A CSC space $\mathcal X$ is **compact** if every open cover of $\mathcal X$ has a finite subcover.

A CSC space $\mathcal X$ is **basically compact** if every basic open cover of $\mathcal X$ has a finite subcover.

The CSC space \mathfrak{X} with base $\mathfrak{B} = (B_i)_{i \in \mathbb{N}}$ has a **finite cover relation** if

$$\{s \in \mathbf{N}^{[<\infty]} : \bigcup_{i \in s} B_i = X\}$$

is an internal set.

Discrete spaces

A CSC space \mathcal{X} is **discrete** if every singleton $\{x\}$ is open in \mathcal{X} .

Theorem (RCA₀)

The following are equivalent:

- Every basically compact discrete space is finite
- Arithmetic comprehension (ACA₀)

basically compact \implies compact

Sequential Compactness

A CSC space \mathcal{X} is **sequentially compact** if every sequence $(x_n)_{n=0}^{\infty}$ of points has an accumulation point.

Theorem (RCA₀)

The following are equivalent:

- Every finite CSC space is sequentially compact
- The infinite pigeonhole principle
- Π_1^0 -bounding ($B\Sigma_2^0$)

Product spaces

The product of two CSC spaces \mathcal{X} and \mathcal{Y} is the CSC space on $X \times Y$ with basis $(B_i^X \times B_j^Y)_{(i,j) \in I \times J}$.

Theorem (RCA_0)

The following are true:

- The product of two sequentially compact CSC spaces is sequentially compact
- The product of two basically compact CSC spaces with finite cover relations is basically compact and has a finite cover relation

Product spaces

Theorem $(RCA_0 + B\Sigma_2^0)$

If there is a function $f: \mathbf{N} \times \mathbf{N} \to \{0,1\}$ such that the map $x \mapsto \lim_{y \to \infty} f(x,y)$ is 1-generic, then there are two basically compact CSC spaces \mathcal{X} and \mathcal{Y} such that the product $\mathcal{X} \times \mathcal{Y}$ is not basically compact.

basic compactness is not always productive

Contents

1 Point-set approach

2 Point-free approach

3 Other base systems

Point-free approach

Idea:

- Basic opens are represented by a poset of numbers
- Collections of basic opens exist
- Points are identifierd with their basic neighborhood filters

Caveat:

■ Limited to a certain class of second-countable spaces

Bases

Let *P* be a poset. If $A, B \subseteq P$, we write

$$A \leq B \iff (\forall p \in A)(\exists q \in B)(p \leq q).$$

A **coverage system** $\mathcal C$ associates to each $p \in P$ a collection $\mathcal C_p$ of subsets of $P[\leq p]$ — **basic covers** of p — such that if $q \leq p$ and $C \in \mathcal C_p$ then there is a $C' \in \mathcal C_q$ such that $C' \leq C$.

A **countable coded coverage system** is a coverage system where each $\mathbb C$ is coded as a subset of $P \times P \times \mathbb N$.

A **countable coded posite** is a pair (P, \mathcal{C}) where \mathcal{C} is a countable coded coverage system on P.

Points and opens

A (P, \mathcal{C}) -point $F \subseteq P$ is a (nonempty) filter such that if $p \in F$ and $C \in \mathcal{C}_p$ then $F \cap C \neq \emptyset$.

A (P, \mathcal{C}) -open is a lower set $I \subseteq P$ such that if $C \in \mathcal{C}_p$ and $C \subseteq I$ then $p \in I$.

Thus a (P, \mathcal{C}) -point is a filter on P whose complement is a (P, \mathcal{C}) -open.

Theorem (ACA₀)

If $I \subseteq P$ is a (P, \mathbb{C}) -open and $p \notin I$ then there is a (P, \mathbb{C}) -point F such that $p \in F$ and $F \cap I = \emptyset$.

Opens

Given a posite (P, \mathcal{C}) and $p \in P$ we write \mathcal{X}_p for the class of all (P, \mathcal{C}) -points containing p.

Theorem (ACA₀)

The following are equivalent:

- If (P, \mathbb{C}) is a countable coded posite, then for every set $A \subseteq P$ there is a (P, \mathbb{C}) -open I such that $\bigcup_{p \in A} \mathcal{X}_p = \bigcup_{q \in I} \mathcal{X}_q$
- Π₁¹-comprehension

It is enough to consider the case where (P, \mathcal{C}) is the usual posite for Baire space.

Continuity

A **continuous map** $F:(Q,\mathcal{D})\to (P,\mathcal{C})$ is a relation $F\subseteq P\times Q$ such that:

- For every $q \in Q$ there is a $p \in P$ such that $(p,q) \in F$
- If $(p,q) \in F$ and $p' \ge p, q \ge q'$ then $(p',q') \in F$
- If $(p_1, q), (p_2, q) \in F$ then there is a $p \le p_1, p_2$ such that $(p, q) \in F$
- If $(p,q) \in F$ and $C \in \mathcal{C}_p$ then $(p',q) \in F$ for some $p' \in C$

If X is a (Q, \mathcal{D}) -point then

$$F(X) = \{ p \in P : (\exists q \in X) [(p,q) \in F] \}$$

is a (P, \mathcal{C}) -point.

Regular spaces

Write $q \leqslant p$ if $P[\leq p] \cup P[\perp q]$ is a (P, \mathcal{C}) -cover. The posite (P, \mathcal{C}) is **regular** if

$$P[\leqslant p]$$

covers p, for every $p \in P$.

We say that (P, \mathcal{C}) is **strongly regular** if there exists a relation \triangleleft such that

- $\blacksquare q \triangleleft p \Longrightarrow q \leqslant p$, and
- $P[\triangleleft p] \in \mathcal{C}_p$ for every p.

Metrizability

Theorem (ACA⁺)

Every strongly regular countable coded posite is embeddable in $[0,1]^{\mathbf{N}}$.

Theorem $(\Pi_1^1$ -CA₀)

Every regular countable coded posite is embeddable in $[0,1]^N$.

Reversals are unclear. Mummert has shown that complete metrizability of regular maximal filter spaces may require up to Π_2^1 -comprehension!

Choquet games

Theorem

A topological space is representable by a countable coded posite if and only if

- \blacksquare X is T_0
- X is second-countable
- Nonempty has a weakly convergent winning strategy in the strong Choquet game on X.

A winning strategy for Nonempty in the strong Choquet game is **weakly convergent** if the open sets played by Nonempty generate the neighborhood filter of some point.

Contents

1 Point-set approach

2 Point-free approach

3 Other base systems

Arithmetic transfinite recursion

An arithmetic operator is of the form $\Phi(X) = \{n \in \mathbb{N} : \phi(n, X)\}$ where ϕ arithmetic. The **iteration** of Φ along (A, \prec) is the set $X \subseteq \mathbb{N} \times A$

$$X_a = \Phi(X \upharpoonright a)$$

where $X_a = \{n \in \mathbf{N} : (n, a) \in X\}$ and $X \upharpoonright a = \{(n, b) \in X : b \prec a\}$.

- ATR₀ (Arithmetic Transfinite Recursion) states that every arithmetic operator can be iterated along any countable wellordering.
- ACA $_0^+$ states that every arithmetic operator can be iterated along (**N**,<).

Rudimentary functions

The **rudimentary functions** are generated by composition from the nine basic functions:

$$\begin{split} R_0(x,y) &= \{x,y\} & R_3(x) = \text{dom } x & R_6(x) = \{(v,u,w) : (u,v,w) \in x\} \\ R_1(x,y) &= x \setminus y & R_4(x,y) = x \times y & R_7(x) = \{(v,w,u) : (u,v,w) \in x\} \\ R_2(x) &= \bigcup x & R_5(x) = x \cap (\in) & R_8(x,y) = \{x \text{``}\{u\} : u \in y\} \end{split}$$

The **Jensen hierarchy** is defined by

$$J_{\xi} = \bigcup_{\zeta < \xi} \operatorname{rud}(J_{\zeta}).$$

There is a rudimentary function \mathbb{T} such that $J_{\xi} = T_{\xi\omega}$ where $T_{\xi} = \bigcup_{\zeta < \xi} \mathbb{T}(T_{\zeta})$.

Rudimentary recursive functions

The **rudimentary recursive functions** are solutions of equations of the form

$$F(x) = G(p, F \upharpoonright x)$$

where G is rudimentary and p is a set parameter.

- $ightharpoonup \operatorname{rank}(x) = \bigcup \{\operatorname{rank}(y) + 1 : y \in x\}$
- $trcl(x) = x \cup \bigcup \{trcl(y) : y \in x\}$
- $T_{\xi} = \bigcup_{\zeta < \xi} \mathbb{T}(T_{\zeta})$
- $\tilde{x} = \{(1, \check{y}) : y \in x\}$

Providence

Definition (Mathias)

A **provident set** is a transitive set A closed under pairing and rudimentary recursion (with parameters in A).

 J_{lpha} is provident if and only if lpha is indecomposable.

PROVI₀ is the elementary theory of provident sets with infinity:

- Extensionality
- Infinity
- Rudimentary closure axioms
- Rudimentary recursion axioms

Mathias showed that PROVI₀ is finitely axiomatizable.

Arithmetical interpretation

Theorem (with Mathias)

The theory $PROVI_0$ is mutually interpretable with ACA_0^+ .

- **1** The arithmetic part of a model of $PROVI_0 + HC$ is a model of ACA_0^+ .
- 2 Every model of ACA_0^+ is the arithmetic part of a model of $PROVI_0 + HC$.
- 3 Every model of $PROVI_0 + HC$ is an initial segment of the model of $PROVI_0 + HC$ reconstructed from its arithmetic part as in 2.