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Reverse mathematics

The program of reverse mathematics aims to figure out which
axioms are necessary to prove theorems of everyday mathematics.

The axioms systems traditionally used are subsystems of
second-order arithmetic. These are two-sorted systems with a
number sort and a set sort. The number sort obeys the usual
axioms for basic arithmetic (PA−).

RCA0 is the base system it has just enough comprehension to
show that sets are closed under relative computability

ACA0 adds comprehension for arithmetic formulas (without
set quantifiers but maybe with set parameters)

Π1
1-CA0 adds comprehension for Π1

1-formulas (of the form
∀X φ(n,X ) where φ is arithmetic)

All systems include induction for Σ0
1-formulas



Fundamental problem

Second-order arithmetic has two layers of objects — numbers and
sets — but topology usually works with three layers:

points

open sets, closed sets, etc.

covers, filters, etc.



Other approaches

Complete separable metric spaces are well understood1

Mummert studied maximal filter spaces as a more general
notion of topological spaces2

Hunter studied general topological spaces in systems of
arithmetic with higher types and atoms3

1S. Simpson, Subsystems of second order arithmetic, 2nd ed., Cambridge
University Press, Cambridge, 2009. DOI:10.1017/CBO9780511581007

2C. Mummert, Reverse mathematics of MF spaces, Journal of Mathematical
Logic 6 (2007), 203–232. DOI:10.1142/S0219061306000578.

3J. Hunter, Higher-order reverse topology, Ph.D. Thesis, University of
Wisconsin–Madison, 2008.

http://dx.doi.org/10.1017/CBO9780511581007
http://dx.doi.org/10.1142/S0219061306000578
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Point-set approach

Idea:

Points are a set of numbers

Basic opens are an indexed sequence of esets of points

Collections of indices are used to code higher order objects

Caveat:

Limited to countable second-countable spaces



Bases

An effective base on a set X is a uniformly enumerable family
B = (Bi )i∈N of esets for which there are partial functions
α : X → N and β : X ×N×N→ N such that

x ∈ Bα(x)

and
x ∈ Bi ∩ Bj =⇒ x ∈ Bβ(x ,i ,j) ⊆ Bi ∩ Bj .

Note: If A = (Aj)j∈N is any uniformly enumerable family then

Bs =
⋂

j∈s Aj , s ∈ N[<∞],

is an effective base that generates the same topology on X .



Opens

A CSC space X is a set X equipped with an effective base BX .

An open in X is an eset U ⊆ X such that for each x ∈ U there is
a basic open Bi such that x ∈ Bi ⊆ U.

An effective open in X is an eset U ⊆ X for which there is a
partial function γ : X → N such that

x ∈ U =⇒ x ∈ Bγ(x) ⊆ U.

An (effective) closed in X is the complement of an (effective)
open.



Continuity

Let X and Y be CSC spaces.

A function f : X → Y is continuous if any of the following
equivalent conditions hold:

f −1[G ] is open in X for every open G in Y.

f −1[BY
j ] is open in X for every basic open BY

j .

when f (x) ∈ BY
j there is a basic open BX

i such that

x ∈ BX
i ⊆ f −1[BY

j ].

A function f : X → Y is effectively continuous if there is a
partial function φ : X ×N→ N such that

f (x) ∈ BY
i =⇒ x ∈ BX

φ(x ,i) ⊆ f −1[BY
i ].



Compactness

An open cover of X is an uniformly enumerable family of open
sets (Uj)j∈N such that X =

⋃
j∈N Uj .

A CSC space X is compact if every open cover of X has a finite
subcover.

A CSC space X is basically compact if every basic open cover of
X has a finite subcover.

The CSC space X with base B = (Bi )i∈N has a finite cover
relation if

{s ∈ N[<∞] :
⋃

i∈s Bi = X}

is an internal set.



Discrete spaces

A CSC space X is discrete if every singleton {x} is open in X.

Theorem (RCA0)

The following are equivalent:

Every basically compact discrete space is finite

Arithmetic comprehension (ACA0)

basically compact 6=⇒ compact



Sequential Compactness

A CSC space X is sequentially compact if every sequence (xn)∞n=0

of points has an accumulation point.

Theorem (RCA0)

The following are equivalent:

Every finite CSC space is sequentially compact

The infinite pigeonhole principle

Π0
1-bounding (BΣ0

2)

compact 6=⇒ sequentially compact



Product spaces

The product of two CSC spaces X and Y is the CSC space on
X × Y with basis (BX

i × BY
j )(i ,j)∈I×J .

Theorem (RCA0)

The following are true:

The product of two sequentially compact CSC spaces is
sequentially compact

The product of two basically compact CSC spaces with finite
cover relations is basically compact and has a finite cover
relation



Product spaces

Theorem (RCA0 + BΣ0
2)

If there is a function f : N×N→ {0, 1} such that the map
x 7→ limy→∞ f (x , y) is 1-generic, then there are two basically
compact CSC spaces X and Y such that the product X× Y is not
basically compact.

basic compactness is not always productive
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Point-free approach

Idea:

Basic opens are represented by a poset of numbers

Collections of basic opens exist

Points are identifierd with their basic neighborhood filters

Caveat:

Limited to a certain class of second-countable spaces



Bases

Let P be a poset. If A,B ⊆ P, we write

A ≤ B ⇐⇒ (∀p ∈ A)(∃q ∈ B)(p ≤ q).

A coverage system C associates to each p ∈ P a collection Cp of
subsets of P[≤ p] — basic covers of p — such that if q ≤ p and
C ∈ Cp then there is a C ′ ∈ Cq such that C ′ ≤ C .

A countable coded coverage system is a coverage system where
each C is coded as a subset of P × P × N.
A countable coded posite is a pair (P,C) where C is a countable
coded coverage system on P.



Points and opens

A (P,C)-point F ⊆ P is a (nonempty) filter such that if p ∈ F
and C ∈ Cp then F ∩ C 6= ∅.

A (P,C)-open is a lower set I ⊆ P such that if C ∈ Cp and C ⊆ I
then p ∈ I .

Thus a (P,C)-point is a filter on P whose complement is a
(P,C)-open.

Theorem (ACA0)

If I ⊆ P is a (P,C)-open and p /∈ I then there is a (P,C)-point F
such that p ∈ F and F ∩ I = ∅.



Opens

Given a posite (P,C) and p ∈ P we write Xp for the class of all
(P,C)-points containing p.

Theorem (ACA0)

The following are equivalent:

If (P,C) is a countable coded posite, then for every set A ⊆ P
there is a (P,C)-open I such that

⋃
p∈AXp =

⋃
q∈I Xq

Π1
1-comprehension

It is enough to consider the case where (P,C) is the usual posite
for Baire space.



Continuity

A continuous map F : (Q,D)→ (P,C) is a relation F ⊆ P × Q
such that:

For every q ∈ Q there is a p ∈ P such that (p, q) ∈ F

If (p, q) ∈ F and p′ ≥ p, q ≥ q′ then (p′, q′) ∈ F

If (p1, q), (p2, q) ∈ F then there is a p ≤ p1, p2 such that
(p, q) ∈ F

If (p, q) ∈ F and C ∈ Cp then (p′, q) ∈ F for some p′ ∈ C

If X is a (Q,D)-point then

F (X ) = {p ∈ P : (∃q ∈ X )[(p, q) ∈ F ]}

is a (P,C)-point.



Regular spaces

Write q 0 p if P[≤ p] ∪ P[⊥ q] is a (P,C)-cover. The posite
(P,C) is regular if

P[0 p]

covers p, for every p ∈ P.

We say that (P,C) is strongly regular if there exists a relation /
such that

q / p =⇒ q 0 p, and

P[/p] ∈ Cp for every p.



Metrizability

Theorem (ACA+)

Every strongly regular countable coded posite is embeddable in
[0, 1]N.

Theorem (Π1
1-CA0)

Every regular countable coded posite is embeddable in [0, 1]N.

Reversals are unclear. Mummert has shown that complete
metrizability of regular maximal filter spaces may require up to
Π1
2-comprehension!



Choquet games

Theorem

A topological space is representable by a countable coded posite if
and only if

X is T0

X is second-countable

Nonempty has a weakly convergent winning strategy in the
strong Choquet game on X .

A winning strategy for Nonempty in the strong Choquet game is
weakly convergent if the open sets played by Nonempty generate
the neighborhood filter of some point.
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Arithmetic transfinite recursion

An arithmetic operator is of the form Φ(X ) = {n ∈ N : φ(n,X )}
where φ arithmetic. The iteration of Φ along (A,≺) is the set
X ⊆ N× A

Xa = Φ(X �a)

where Xa = {n ∈ N : (n, a) ∈ X} and X �a = {(n, b) ∈ X : b ≺ a}.

ATR0 (Arithmetic Transfinite Recursion) states that every
arithmetic operator can be iterated along any countable
wellordering.

ACA+
0 states that every arithmetic operator can be iterated

along (N, <).



Rudimentary functions

The rudimentary functions are generated by composition from
the nine basic functions:

R0(x , y) = {x , y} R3(x) = dom x R6(x) = {(v , u,w) : (u, v ,w) ∈ x}
R1(x , y) = x \ y R4(x , y) = x × y R7(x) = {(v ,w , u) : (u, v ,w) ∈ x}
R2(x) =

⋃
x R5(x) = x ∩ (∈) R8(x , y) = {x“{u} : u ∈ y}

The Jensen hierarchy is defined by

Jξ =
⋃
ζ<ξ

rud(Jζ).

There is a rudimentary function T such that Jξ = Tξω where
Tξ =

⋃
ζ<ξ T(Tζ).



Rudimentary recursive functions

The rudimentary recursive functions are solutions of equations
of the form

F (x) = G (p,F � x)

where G is rudimentary and p is a set parameter.

rank(x) =
⋃
{rank(y) + 1 : y ∈ x}

trcl(x) = x ∪
⋃
{trcl(y) : y ∈ x}

Tξ =
⋃
ζ<ξ T(Tζ)

x̌ = {(1, y̌) : y ∈ x}
valG (x) = {valG (y) : ∃p ∈ G (p, y) ∈ x}



Providence

Definition (Mathias)

A provident set is a transitive set A closed under pairing and
rudimentary recursion (with parameters in A).

Jα is provident if and only if α is indecomposable.
PROVI0 is the elementary theory of provident sets with infinity:

Extensionality

Infinity

Rudimentary closure axioms

Rudimentary recursion axioms

Mathias showed that PROVI0 is finitely axiomatizable.



Arithmetical interpretation

Theorem (with Mathias)

The theory PROVI0 is mutually interpretable with ACA+
0 .

1 The arithmetic part of a model of PROVI0 + HC is a model of
ACA+

0 .

2 Every model of ACA+
0 is the arithmetic part of a model of

PROVI0 + HC.

3 Every model of PROVI0 + HC is an initial segment of the
model of PROVI0 + HC reconstructed from its arithmetic part
as in 2.
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