Duality Theories for Boolean Algebras with Operators

Steven Givant

Mills College Oakland, California

August 4, 2013

Introduction

Algebraic duality

Topological duality

Hybrid duality

References

Steven Givant Duality Theories for Boolean Algebras with Operators

回 と く ヨ と く ヨ と

People who have contributed to the subject

- Marshall Stone.
- Bjarni Jónsson and Alfred Tarski.
- Paul Halmos.
- Georges Hansoul.
- Giovanni Sambin and Vicenzo Vaccaro.
- Robert Goldblatt.
- Sergio Celani.
- Steven Givant.

高 とう モン・ く ヨ と

Existing dualities for Boolean algebras

Algebra

Dual

(1日) (1日) (日)

Existing dualities for Boolean algebras

Algebra

 Complete and atomic Boolean algebras (algebra of subsets of U). Dual

* Sets U (atoms).

回 と く ヨ と く ヨ と

Existing dualities for Boolean algebras

Algebra

- Complete and atomic Boolean algebras (algebra of subsets of U).
- Arbitrary Boolean algebras.

Dual

* Sets U (atoms).

* Arbitrary Boolean spaces.

向下 イヨト イヨト

Existing dualities for Boolean algebras

Algebra

- Complete and atomic Boolean algebras (algebra of subsets of U).
- Arbitrary Boolean algebras.
- Boolean algebra of subsets of U.

Dual

* Sets U (atoms).

* Arbitrary Boolean spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

 * Stone-Čech compactification of discrete space U.

Desired dualities for Boolean algebras with operators

Algebra

Dual

Steven Givant Duality Theories for Boolean Algebras with Operators

回 と く ヨ と く ヨ と

Desired dualities for Boolean algebras with operators

Algebra

 Boolean algebra + operators. Dual

* Sets + relations.

回 と く ヨ と く ヨ と

Desired dualities for Boolean algebras with operators

Algebra

- Boolean algebra + operators.
- Homomorphisms.

Dual

* Sets + relations.

*?

回 と く ヨ と く ヨ と

Desired dualities for Boolean algebras with operators

Algebra

- Boolean algebra + operators.
- Homomorphisms.
- Quotient algebras.

- Dual
- * Sets + relations.
- * ? * ?

向下 イヨト イヨト

Desired dualities for Boolean algebras with operators

AlgebraDual• Boolean algebra +
operators.* Sets + relations.• Homomorphisms.* ?• Quotient algebras.* ?• Subalgebras.* ?

Image: A image: A

Desired dualities for Boolean algebras with operators

 → ∃ →

▶ algebra=

Boolean algebra with operators =

Boolean algebra + distributive operations (called *operators*).

回 と く ヨ と く ヨ と …

- algebra =
 Boolean algebra with operators =
 Boolean algebra + distributive operations (called *operators*).
- ► For today's talk: a single binary operator •,

$$\mathfrak{A}=(A_{1},+,-,\circ)$$

 $r \circ (s+t) = r \circ s + r \circ t$ and $(s+t) \circ r = s \circ r + t \circ r$.

- 本部 ト イヨ ト - イヨ ト - - ヨ

- algebra =
 Boolean algebra with operators =
 Boolean algebra + distributive operations (called *operators*).
- ► For today's talk: a single binary operator •,

$$\mathfrak{A}=(A_{1},+,-,\circ)$$

$$r \circ (s+t) = r \circ s + r \circ t$$
 and $(s+t) \circ r = s \circ r + t \circ r$.

All operators are normal:

$$r\circ 0=0\circ r=0.$$

□ ▶ ★ 臣 ▶ ★ 臣 ▶ ...

- algebra =
 Boolean algebra with operators =
 Boolean algebra + distributive operations (called *operators*).
- For today's talk: a single binary operator o,

$$\mathfrak{A}=(A_{1},+,-,\circ)$$

$$r \circ (s+t) = r \circ s + r \circ t$$
 and $(s+t) \circ r = s \circ r + t \circ r$.

All operators are normal:

$$r\circ 0=0\circ r=0.$$

 Complete operator: distributes (in each coordinate) over all infinite sums that exist.

・ 同 ト ・ ヨ ト ・ ヨ ト

Structures

 structure= relational structure = set + relations of positive rank.

・ロト ・回ト ・ヨト ・ヨト

Structures

structure=
 relational structure =
 set + relations of positive rank.

▶ For today's talk: a single ternary relation *R*,

 $\mathfrak{U} = (U, R)$

R(r,s,t)

・ 同 ト ・ ヨ ト ・ ヨ ト

Algebraic duality summary

Algebra

Dual

Steven Givant Duality Theories for Boolean Algebras with Operators

Algebra

 Complete and atomic Boolean algebras with complete operators. Dual

* Relational structures.

回 と く ヨ と く ヨ と

Algebra

- Complete and atomic Boolean algebras with complete operators.
- Complete homomorphisms.

Dual

* Relational structures.

* Bounded homomorphisms.

回 と く ヨ と く ヨ と

Algebra

- Complete and atomic Boolean algebras with complete operators.
- Complete homomorphisms.
- Complete ideals.

Dual

* Relational structures.

* Bounded homomorphisms.

向下 イヨト イヨト

* Inner subuniverses.

Algebra

- Complete and atomic Boolean algebras with complete operators.
- Complete homomorphisms.
- Complete ideals.
- Complete quotients.

Dual

* Relational structures.

* Bounded homomorphisms.

- * Inner subuniverses.
- * Inner substructures.

Algebra

- Complete and atomic Boolean algebras with complete operators.
- Complete homomorphisms.
- Complete ideals.
- Complete quotients.
- Complete subuniverses.

Dual

* Relational structures.

- * Bounded homomorphisms.
- * Inner subuniverses.
- * Inner substructures.
- * Bounded congruences.

Algebra

- Complete and atomic Boolean algebras with complete operators.
- Complete homomorphisms.
- Complete ideals.
- Complete quotients.
- Complete subuniverses.
- Complete subalgebras.

Dual

* Relational structures.

- * Bounded homomorphisms.
- * Inner subuniverses.
- * Inner substructures.
- * Bounded congruences.

- ∢ ⊒ →

* Bounded quotients.

Algebra

- Complete and atomic Boolean algebras with complete operators.
- Complete homomorphisms.
- Complete ideals.
- Complete quotients.
- Complete subuniverses.
- Complete subalgebras.
- Direct products.

Dual

* Relational structures.

- * Bounded homomorphisms.
- * Inner subuniverses.
- * Inner substructures.
- * Bounded congruences.

(4月) イヨト イヨト

- * Bounded quotients.
- * Disjoint unions.

• Given: structure $\mathfrak{U} = (U, R)$.

・回 ・ ・ ヨ ・ ・ ヨ ・

- Given: structure $\mathfrak{U} = (U, R)$.
- Let universe be set Sb(U) of subsets of U.

- Given: structure $\mathfrak{U} = (U, R)$.
- Let universe be set Sb(U) of subsets of U.
- Define binary operator •

$$X \circ Y = \{t \in U : R(r, s, t) \text{ for some } r \in X \text{ and } s \in Y\}.$$

・日本 ・ モン・ ・ モン

- Given: structure $\mathfrak{U} = (U, R)$.
- Let universe be set Sb(U) of subsets of U.
- Define binary operator •

 $X \circ Y = \{t \in U : R(r, s, t) \text{ for some } r \in X \text{ and } s \in Y\}.$

Complex algebra (Jónsson-Tarski):

$$\mathfrak{Cm}(U) = (Sb(U), \cup, \sim, \circ)$$

イロト イポト イラト イラト 一日

- Given: structure $\mathfrak{U} = (U, R)$.
- Let universe be set Sb(U) of subsets of U.
- Define binary operator •

 $X \circ Y = \{t \in U : R(r, s, t) \text{ for some } r \in X \text{ and } s \in Y\}.$

Complex algebra (Jónsson-Tarski):

$$\mathfrak{Cm}(U) = (Sb(U), \cup, \sim, \circ)$$

• Example: complex algebra of group (G, \circ) ,

 $X \circ Y = \{h \in G : h = f \circ g \text{ for some } f \in X \text{ and } g \in Y\}.$

• Given: complete and atomic algebra $\mathfrak{A} = (A, +, -, \circ)$.

・回 ・ ・ ヨ ・ ・ ヨ ・

- Given: complete and atomic algebra $\mathfrak{A} = (A, +, -, \circ)$.
- Let U be set of atoms in \mathfrak{A} .

▲圖▶ ▲屋▶ ▲屋▶

- Given: complete and atomic algebra $\mathfrak{A} = (A, +, -, \circ)$.
- Let U be set of atoms in \mathfrak{A} .
- ▶ Define ternary relation *R*:

$$R(r, s, t)$$
 if and only if $t \leq r \circ s$

・日本 ・ モン・ ・ モン

- Given: complete and atomic algebra $\mathfrak{A} = (A, +, -, \circ)$.
- Let U be set of atoms in \mathfrak{A} .
- ▶ Define ternary relation *R*:

R(r, s, t) if and only if $t \leq r \circ s$

Atom structure (Jónsson-Tarski):

 $\mathfrak{U} = (U, R).$

イロト イポト イヨト イヨト 二日
Theorem [Jónsson-Tarski]

白 ト く ヨ ト く ヨ ト

Theorem [Jónsson-Tarski]

 A complete and atomic algebra with complete operators is canonically isomorphic to the complex algebra of its atom structure.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem [Jónsson-Tarski]

- A complete and atomic algebra with complete operators is canonically isomorphic to the complex algebra of its atom structure.
- A structure is canonically isomorphic to the atom structure of its complex algebra.

伺 と く き と く き と

Theorem [Jónsson-Tarski]

- A complete and atomic algebra with complete operators is canonically isomorphic to the complex algebra of its atom structure.
- A structure is canonically isomorphic to the atom structure of its complex algebra.

Identify a complete and atomic algebra with complete operators with its second dual, the complex algebra of its atom structure.

・ 同 ト ・ ヨ ト ・ ヨ ト

Morphisms

Algebra: complete homomorphisms

 $\varphi:\mathfrak{A}\longrightarrow\mathfrak{B}$

preserve fundamental operations and all existing infinite sums,

$$\varphi(\sum X) = \sum \{\varphi(r) : r \in X\}.$$

(ロ) (同) (E) (E) (E)

Morphisms

Algebra: complete homomorphisms

 $\varphi:\mathfrak{A}\longrightarrow\mathfrak{B}$

preserve fundamental operations and all existing infinite sums,

$$\varphi(\sum X) = \sum \{\varphi(r) : r \in X\}.$$

Structures: bounded homomorphisms (Goldblatt, modal logic)

$$\vartheta: (U, R) \longrightarrow (V, S)$$

preserve fundamental relations, and

 $S(r, s, \vartheta(w))$ implies R(u, v, w)

for some u, v in U such that $\vartheta(u) = r$ and $\vartheta(v) = s$.

Complete homomorphisms from bounded homomorphisms

Given: bounded homomorphism

 $\vartheta:\mathfrak{U}\longrightarrow\mathfrak{V}.$

・ 回 と ・ ヨ と ・ モ と …

3

Complete homomorphisms from bounded homomorphisms

Given: bounded homomorphism

 $\vartheta:\mathfrak{U}\longrightarrow\mathfrak{V}.$

Construct: dual complete homomorphism

 $\varphi: \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U).$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Complete homomorphisms from bounded homomorphisms

Given: bounded homomorphism

$$\vartheta:\mathfrak{U}\longrightarrow\mathfrak{V}.$$

Construct: dual complete homomorphism

$$\varphi: \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U).$$

▶ Definition (Goldblatt): for each X in $\mathfrak{Cm}(V)$ (so $X \subseteq V$),

$$\varphi(X) = \vartheta^{-1}(X) = \{ u \in U : \vartheta(u) \in X \}.$$

向下 イヨト イヨト

Bounded homomorphisms from complete homomorphisms

Given: complete homomorphism

 $\varphi: \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U).$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Bounded homomorphisms from complete homomorphisms

Given: complete homomorphism

$$\varphi: \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U).$$

Construct: dual bounded homomorphism

$$\vartheta:\mathfrak{U}\longrightarrow\mathfrak{V}.$$

向下 イヨト イヨト

Bounded homomorphisms from complete homomorphisms

Given: complete homomorphism

$$\varphi : \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U).$$

Construct: dual bounded homomorphism

 $\vartheta:\mathfrak{U}\longrightarrow\mathfrak{V}.$

• Definition (Jónsson): for each u in \mathfrak{U} ,

 $\vartheta(u) = r$ if and only if $r \in \bigcap \{X \subseteq V : u \in \varphi(X)\}$

イロト イポト イラト イラト 一日

Theorem [Strengthens Jónsson]

There is a bijective correspondence between: bounded homomorphisms $\vartheta : \mathfrak{U} \longrightarrow \mathfrak{V}$, and complete homomorphisms $\varphi : \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U)$.

Theorem [Strengthens Jónsson]

There is a bijective correspondence between: bounded homomorphisms $\vartheta : \mathfrak{U} \longrightarrow \mathfrak{V}$, and complete homomorphisms $\varphi : \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U)$.

Each morphism determines its dual via the equivalence

$$u \in \varphi(X)$$
 if and only if $\vartheta(u) \in X$

for X in $\mathfrak{Cm}(V)$ (so $X \subseteq V$) and u in \mathfrak{U} .

伺 ト イヨト イヨト

Theorem [Strengthens Jónsson]

There is a bijective correspondence between: bounded homomorphisms $\vartheta : \mathfrak{U} \longrightarrow \mathfrak{V}$, and complete homomorphisms $\varphi : \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U)$.

Each morphism determines its dual via the equivalence

$$u \in \varphi(X)$$
 if and only if $\vartheta(u) \in X$

for X in $\mathfrak{Cm}(V)$ (so $X \subseteq V$) and u in \mathfrak{U} .

• Each morphism is equal to its second dual.

伺 ト イヨト イヨト

Theorem [Strengthens Jónsson]

There is a bijective correspondence between: bounded homomorphisms $\vartheta : \mathfrak{U} \longrightarrow \mathfrak{V}$, and complete homomorphisms $\varphi : \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U)$.

Each morphism determines its dual via the equivalence

$$u\in arphi(X)$$
 if and only if $artheta(u)\in X$

for X in $\mathfrak{Cm}(V)$ (so $X \subseteq V$) and u in \mathfrak{U} .

- Each morphism is equal to its second dual.
- Each morphism is one-to-one if and only if its dual is onto.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem [Strengthens Jónsson]

There is a bijective correspondence between: bounded homomorphisms $\vartheta : \mathfrak{U} \longrightarrow \mathfrak{V}$, and complete homomorphisms $\varphi : \mathfrak{Cm}(V) \longrightarrow \mathfrak{Cm}(U)$.

Each morphism determines its dual via the equivalence

$$u\in arphi(X)$$
 if and only if $artheta(u)\in X$

for X in $\mathfrak{Cm}(V)$ (so $X \subseteq V$) and u in \mathfrak{U} .

- Each morphism is equal to its second dual.
- Each morphism is one-to-one if and only if its dual is onto.
- The duality reverses compositions.

・ 同 ト ・ ヨ ト ・ ヨ ト

Categories

Dually equivalent categories [Jónsson]:

白 ト く ヨ ト く ヨ ト

æ

Categories

Dually equivalent categories [Jónsson]:

Category of structures with bounded homomorphisms,

回 と く ヨ と く ヨ と

3

Categories

Dually equivalent categories [Jónsson]:

- Category of structures with bounded homomorphisms,
- Category of complete and atomic Boolean algebras with complete operators, and with complete homomorphisms.

向下 イヨト イヨト

• Definition: An *ideal* in \mathfrak{A} is a Boolean ideal M such that

 $r \in M$ and $s \in A$ implies $r \circ s, s \circ r \in M$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

• Definition: An *ideal* in \mathfrak{A} is a Boolean ideal M such that

 $r \in M$ and $s \in A$ implies $r \circ s, s \circ r \in M$.

The ideal is complete if it contains all existing sums of its infinite subsets.

▶ Definition: An *ideal* in 𝔅 is a Boolean ideal *M* such that

 $r \in M$ and $s \in A$ implies $r \circ s, s \circ r \in M$.

- The ideal is complete if it contains all existing sums of its infinite subsets.
- Every complete ideal M in a complete algebra is principal: $r = \sum M$ is maximum element generating M.

- 4 同 1 4 日 1 4 日 1 日 日

▶ Definition: An *ideal* in 𝔅 is a Boolean ideal *M* such that

 $r \in M$ and $s \in A$ implies $r \circ s, s \circ r \in M$.

- The ideal is complete if it contains all existing sums of its infinite subsets.
- Every complete ideal M in a complete algebra is principal: $r = \sum M$ is maximum element generating M.
- ► The complete ideals form a complete lattice under inclusion.

イロト イポト イヨト イヨト 二日

Inner subuniverses

Definition (Goldblatt, modal logic): An inner subuniverse of is a subuniverse V such that for r, s, t in u,

$$R(r, s, t)$$
 and $t \in V$ implies $r, s \in V$.

白 と く ヨ と く ヨ と

Inner subuniverses

Definition (Goldblatt, modal logic): An inner subuniverse of is a subuniverse V such that for r, s, t in u,

R(r, s, t) and $t \in V$ implies $r, s \in V$.

The inner subuniverses form a complete lattice under inclusion.

- 本部 ト イヨ ト - - ヨ

Inner subuniverses from complete ideals

• Given: complete ideal M in $\mathfrak{Cm}(U)$.

回 と く ヨ と く ヨ と

Inner subuniverses from complete ideals

- Given: complete ideal M in $\mathfrak{Cm}(U)$.
- Construct: dual inner subuniverse V of \mathfrak{U} .

個 と く ヨ と く ヨ と …

Inner subuniverses from complete ideals

- Given: complete ideal M in $\mathfrak{Cm}(U)$.
- Construct: dual inner subuniverse V of \mathfrak{U} .
- Definition: If W is the generator of M, then $V = \sim W$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Complete ideals from inner subuniverses

• Given: inner subuniverse V of \mathfrak{U} .

回 と くほ と くほ とう

æ

Complete ideals from inner subuniverses

- Given: inner subuniverse V of \mathfrak{U} .
- Construct: dual complete ideal M in $\mathfrak{Cm}(U)$.

個 と く ヨ と く ヨ と …

Complete ideals from inner subuniverses

- Given: inner subuniverse V of \mathfrak{U} .
- Construct: dual complete ideal M in $\mathfrak{Cm}(U)$.
- Definition: *M* consists of the subsets of $\sim V$.

個 と く ヨ と く ヨ と …

Theorem

There is a bijective correspondence between complete ideals and inner subuniverses.

向下 イヨト イヨト

Theorem

There is a bijective correspondence between complete ideals and inner subuniverses.

► The dual of every complete ideal in 𝔅𝑘(U) is an inner subuniverse of 𝔅.

伺 と く き と く き と

Theorem

There is a bijective correspondence between complete ideals and inner subuniverses.

- ► The dual of every complete ideal in 𝔅𝑘(U) is an inner subuniverse of 𝔅.
- ► The dual of every inner subuniverse of 𝔅 is a complete ideal in 𝔅𝑘(U).

伺下 イヨト イヨト

Theorem

There is a bijective correspondence between complete ideals and inner subuniverses.

- ► The dual of every complete ideal in 𝔅𝑘(U) is an inner subuniverse of 𝔅.
- ► The dual of every inner subuniverse of 𝔅 is a complete ideal in 𝔅𝑘(U).
- The second dual of every complete ideal and of every inner subuniverse is itself.

・ 同 ト ・ ヨ ト ・ ヨ ト …
Duality for complete ideals and inner subuniverses

Theorem

There is a bijective correspondence between complete ideals and inner subuniverses.

- ► The dual of every complete ideal in 𝔅𝑘(U) is an inner subuniverse of 𝔅.
- ► The dual of every inner subuniverse of 𝔅 is a complete ideal in 𝔅𝑘(U).
- The second dual of every complete ideal and of every inner subuniverse is itself.
- The function mapping each complete ideal to its dual inner subuniverse is a dual lattice isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

Duality for complete quotients and inner substructures

Theorem

 ${\mathfrak V}$ is an inner substructure of ${\mathfrak U},$

M is the dual complete ideal of its universe V.

伺下 イヨト イヨト

Duality for complete quotients and inner substructures

Theorem

 ${\mathfrak V}$ is an inner substructure of ${\mathfrak U},$

M is the dual complete ideal of its universe V.

► The dual algebra of 𝔅—which is the complex algebra 𝔅𝑘(V)—is isomorphic to 𝔅𝑘(U)/M.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Duality for complete quotients and inner substructures

Theorem

 ${\mathfrak V}$ is an inner substructure of ${\mathfrak U},$

M is the dual complete ideal of its universe V.

- ► The dual algebra of 𝔅—which is the complex algebra 𝔅𝑘(V)—is isomorphic to 𝔅𝑘(U)/M.
- The dual structure of $\mathfrak{Cm}(U)/M$ is isomorphic to \mathfrak{V} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline Introduction Algebraic duality Topological duality

Complete subalgebras and bounded quotients

Similar duality between:

白 ト イヨト イヨト

Complete subalgebras and bounded quotients

- Similar duality between:
- Complete subuniverse of algebras, and

向下 イヨト イヨト

Complete subalgebras and bounded quotients

- Similar duality between:
- Complete subuniverse of algebras, and
- Bounded congruences on structures, and between

- ∢ ⊒ →

Complete subalgebras and bounded quotients

- Similar duality between:
- Complete subuniverse of algebras, and
- Bounded congruences on structures, and between
- Complete subalgebras and bounded quotients.

- ∢ ⊒ →

• Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational structure $\mathfrak{U}_i = (U_i, R_i)$.

個 と く ヨ と く ヨ と …

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational structure $\mathfrak{U}_i = (U_i, R_i)$.
- Construct: union $\mathfrak{U} = \bigcup_{i} \mathfrak{U}_{i}$

・ 回 と ・ ヨ と ・ ヨ と

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational structure $\mathfrak{U}_i = (U_i, R_i)$.
- Construct: union $\mathfrak{U} = \bigcup_{i} \mathfrak{U}_{i}$
- Definition: $U = \bigcup_i U_i$ and $R = \bigcup_i R_i$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational structure $\mathfrak{U}_i = (U_i, R_i)$.
- Construct: union $\mathfrak{U} = \bigcup_{i} \mathfrak{U}_{i}$
- Definition: $U = \bigcup_i U_i$ and $R = \bigcup_i R_i$.
- ▶ Construct: system ($\mathfrak{Cm}(U_i)$: $i \in I$) of dual complex algebras.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational structure $\mathfrak{U}_i = (U_i, R_i)$.
- Construct: union $\mathfrak{U} = \bigcup_{i} \mathfrak{U}_{i}$
- Definition: $U = \bigcup_i U_i$ and $R = \bigcup_i R_i$.
- ▶ Construct: system ($\mathfrak{Cm}(U_i)$: $i \in I$) of dual complex algebras.

Theorem [strengthens Goldblatt]

The dual of the union \mathfrak{U} is the internal product $\prod_{i} \mathfrak{Cm}(U_i)$.

•
$$\mathfrak{Cm}(U) = \prod_i \mathfrak{Cm}(U_i).$$

Outline Introduction Algebraic duality Topological duality

Topological duality summary

Algebra

Dual

Steven Givant Duality Theories for Boolean Algebras with Operators

回 と く ヨ と く ヨ と

æ

Algebra

 Boolean algebras with operators. Dual

* Relational spaces.

回 と く ヨ と く ヨ と

Algebra

- Boolean algebras with operators.
- Homomorphisms.

Dual

* Relational spaces.

* Continuous bounded homomorphisms.

回 と く ヨ と く ヨ と

Algebra

- Boolean algebras with operators.
- Homomorphisms.
- Ideals.

Dual

* Relational spaces.

- * Continuous bounded homomorphisms.
- * Special open sets.

伺下 イヨト イヨト

Algebra

- Boolean algebras with operators.
- Homomorphisms.
- Ideals.
- Quotients.

Dual

* Relational spaces.

- * Continuous bounded homomorphisms.
- * Special open sets.
- * Inner relational subspaces.

伺下 イヨト イヨト

Algebra

- Boolean algebras with operators.
- Homomorphisms.
- Ideals.
- Quotients.
- Subuniverses.

Dual

* Relational spaces.

- * Continuous bounded homomorphisms.
- * Special open sets.
- * Inner relational subspaces.
- * Bounded Boolean congruences.

・ 同 ト ・ ヨ ト ・ ヨ ト

Algebra

- Boolean algebras with operators.
- Homomorphisms.
- Ideals.
- Quotients.
- Subuniverses.
- Subalgebras.

Dual

* Relational spaces.

- * Continuous bounded homomorphisms.
- * Special open sets.
- * Inner relational subspaces.
- * Bounded Boolean congruences.

* Bounded quotient spaces.

Algebra

- Boolean algebras with operators.
- Homomorphisms.
- Ideals.
- Quotients.
- Subuniverses.
- Subalgebras.
- Subdirect products.

Dual

* Relational spaces.

- * Continuous bounded homomorphisms.
- * Special open sets.
- * Inner relational subspaces.
- * Bounded Boolean congruences.
- * Bounded quotient spaces.
- * Compactifications of unions.

・ 同 ト ・ ヨ ト ・ ヨ ト

Algebra

- Boolean algebras with operators.
- Homomorphisms.
- Ideals.
- Quotients.
- Subuniverses.
- Subalgebras.
- Subdirect products.
- Direct products.

Dual

* Relational spaces.

- * Continuous bounded homomorphisms.
- * Special open sets.
- * Inner relational subspaces.
- * Bounded Boolean congruences.
- * Bounded quotient spaces.
- * Compactifications of unions.
- * Stone-Čech compactifications of unions.

• Relational structure $\mathfrak{U} = (U, R)$,

・ロト ・回ト ・ヨト ・ヨト

æ

- Relational structure $\mathfrak{U} = (U, R)$,
- with topology on U of a Boolean space:

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

- Relational structure $\mathfrak{U} = (U, R)$,
- with topology on U of a Boolean space:
 - compact Hausdorff space,

回 と く ヨ と く ヨ と

- Relational structure $\mathfrak{U} = (U, R)$,
- with topology on U of a Boolean space:
 - compact Hausdorff space,
 - clopen sets form a base for the topology.

向下 イヨト イヨト

- Relational structure $\mathfrak{U} = (U, R)$,
- with topology on U of a Boolean space:
 - compact Hausdorff space,
 - clopen sets form a base for the topology.
- Fundamental relations are clopen (Halmos, Hansoul, Goldblatt): if F, G are clopen subsets of U, then the image of F × G under R is clopen in U.

 $R^*(F \times G) = \{t \in U : R(r, s, t) \text{ for some } (r, s) \in F \times G\}.$

イロト イポト イヨト イヨト

- Relational structure $\mathfrak{U} = (U, R)$,
- with topology on U of a Boolean space:
 - compact Hausdorff space,
 - clopen sets form a base for the topology.
- Fundamental relations are clopen (Halmos, Hansoul, Goldblatt): if F, G are clopen subsets of U, then the image of F × G under R is clopen in U.

$$R^*(F \times G) = \{t \in U : R(r, s, t) \text{ for some } (r, s) \in F \times G\}.$$

► Fundamental relations are continuous: inverse images under R of open subsets G of U are open in product space U × U.

$$R^{-1}(G) = \{(r,s) \in U imes U : R(r,s,t) ext{ implies } t \in G\}.$$

소리가 소문가 소문가 소문가

Outline Introduction Algebraic duality Topological duality

Algebras from relational spaces

▶ Given: relational space 𝔐.

回 と く ヨ と く ヨ と

æ

Algebras from relational spaces

- ▶ Given: relational space 𝔐.
- ► Construct: dual algebra 𝔄.

<回> < 回> < 回> < 回>

Algebras from relational spaces

- ▶ Given: relational space 𝔐.
- ► Construct: dual algebra 𝔐.
- Clopen subsets of \mathfrak{U} form subuniverse of $\mathfrak{Cm}(U)$.

・日・ ・ ヨ・ ・ ヨ・

Algebras from relational spaces

- ▶ Given: relational space 𝔐.
- ► Construct: dual algebra 𝔐.
- Clopen subsets of \mathfrak{U} form subuniverse of $\mathfrak{Cm}(U)$.
- Definition (Halmos, Hansoul, Goldblatt): A is corresponding subalgebra of clopen sets.

・ 同 ト ・ ヨ ト ・ ヨ ト …

► Given: algebra 𝔄.

回 と く ヨ と く ヨ と

▶ Given: algebra 𝕮.

► Construct: dual relational space 𝔐.

白 ト イヨト イヨト

- ► Given: algebra 𝕮.
- ► Construct: dual relational space 𝔐.
- ► Definition (Goldblatt): *U* is set of Boolean ultrafilters in 𝔄.

・日・ ・ ヨ ・ ・ ヨ ・ ・

- ▶ Given: algebra 𝕮.
- ► Construct: dual relational space 𝔐.
- Definition (Goldblatt): U is set of Boolean ultrafilters in \mathfrak{A} .
- R(X, Y, Z) if and only if $X \circ Y \subseteq Z$, where
Relational spaces from algebras

- ▶ Given: algebra 𝕮.
- ► Construct: dual relational space 𝔐.
- Definition (Goldblatt): U is set of Boolean ultrafilters in \mathfrak{A} .
- R(X, Y, Z) if and only if $X \circ Y \subseteq Z$, where
- $\blacktriangleright X \circ Y = \{r \circ s : r \in X \text{ and } s \in Y\}.$

Relational spaces from algebras

- ▶ Given: algebra 𝕮.
- ► Construct: dual relational space 𝔐.
- Definition (Goldblatt): U is set of Boolean ultrafilters in \mathfrak{A} .
- R(X, Y, Z) if and only if $X \circ Y \subseteq Z$, where

$$\blacktriangleright X \circ Y = \{r \circ s : r \in X \text{ and } s \in Y\}.$$

Topology: Stone topology, where clopen sets have form

$$F_t = \{X \in U : t \in X\}$$

for elements t in \mathfrak{A} .

Theorem [other versions due to Goldblatt, Hansoul, Halmos]

白 ト イヨト イヨト

Theorem [other versions due to Goldblatt, Hansoul, Halmos]

 \blacktriangleright An algebra ${\mathfrak A}$ is canonically isomorphic to its second dual,

高 とう モン・ く ヨ と

Theorem [other versions due to Goldblatt, Hansoul, Halmos]

- \blacktriangleright An algebra ${\mathfrak A}$ is canonically isomorphic to its second dual,
 - the algebra of clopens subsets of ultrafilters in \mathfrak{A} .

伺 とう きょう とう とう

Theorem [other versions due to Goldblatt, Hansoul, Halmos]

- \blacktriangleright An algebra ${\mathfrak A}$ is canonically isomorphic to its second dual,
 - \blacktriangleright the algebra of clopens subsets of ultrafilters in ${\mathfrak A}.$
- A relational space is canonically homeo-isomorphic to its second dual,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem [other versions due to Goldblatt, Hansoul, Halmos]

- \blacktriangleright An algebra ${\mathfrak A}$ is canonically isomorphic to its second dual,
 - \blacktriangleright the algebra of clopens subsets of ultrafilters in ${\mathfrak A}.$
- A relational space is canonically homeo-isomorphic to its second dual,
 - the space of ultrafilters in the algebra of clopen subsets of \mathfrak{U} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem [other versions due to Goldblatt, Hansoul, Halmos]

- \blacktriangleright An algebra ${\mathfrak A}$ is canonically isomorphic to its second dual,
 - \blacktriangleright the algebra of clopens subsets of ultrafilters in ${\mathfrak A}.$
- A relational space is canonically homeo-isomorphic to its second dual,
 - the space of ultrafilters in the algebra of clopen subsets of \mathfrak{U} .

Identify every Boolean algebra with operators with its second dual, the algebra of clopen sets of ultrafilters.

・ 同 ト ・ ヨ ト ・ ヨ ト

 \blacktriangleright $\mathfrak U$ and $\mathfrak V$ are relational spaces.

・ロン ・回と ・ヨン・

æ

- \mathfrak{U} and \mathfrak{V} are relational spaces.
- \blacktriangleright ${\mathfrak A}$ and ${\mathfrak B}$ are the respective dual algebras of clopen sets.

(4回) (4回) (4回)

æ

- \mathfrak{U} and \mathfrak{V} are relational spaces.
- \blacktriangleright ${\mathfrak A}$ and ${\mathfrak B}$ are the respective dual algebras of clopen sets.
- Algebra: arbitrary homomorphisms

$$\varphi: \mathfrak{A} \longrightarrow \mathfrak{B}.$$

- 4 回 ト - 4 回 ト - 4 回 ト

3

- \mathfrak{U} and \mathfrak{V} are relational spaces.
- \blacktriangleright ${\mathfrak A}$ and ${\mathfrak B}$ are the respective dual algebras of clopen sets.
- Algebra: arbitrary homomorphisms

$$\varphi: \mathfrak{A} \longrightarrow \mathfrak{B}.$$

Relational spaces: continuous, bounded homomorphisms

$$\vartheta:\mathfrak{V}\longrightarrow\mathfrak{U},$$

inverse images under ϑ of open sets are open.

伺 ト イヨト イヨト

Homomorphisms from continuous bounded homomorphisms

Given: continuous bounded homomorphism

 $\vartheta:\mathfrak{V}\longrightarrow\mathfrak{U}.$

(ロ) (同) (E) (E) (E)

Homomorphisms from continuous bounded homomorphisms

Given: continuous bounded homomorphism

$$\vartheta:\mathfrak{V}\longrightarrow\mathfrak{U}.$$

Construct: dual homomorphism

$$\varphi: \mathfrak{A} \longrightarrow \mathfrak{B}.$$

▲圖▶ ▲屋▶ ▲屋▶ ---

3

Homomorphisms from continuous bounded homomorphisms

Given: continuous bounded homomorphism

$$\vartheta:\mathfrak{V}\longrightarrow\mathfrak{U}.$$

Construct: dual homomorphism

$$\varphi: \mathfrak{A} \longrightarrow \mathfrak{B}.$$

Definition (Goldblatt): for each F in A (so F is a clopen subset of A),

$$\varphi(F) = \vartheta^{-1}(F) = \{ u \in U : \vartheta(u) \in F \}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Continuous bounded homomorphisms from homomorphisms

► Given: homomorphism

$$\varphi: \mathfrak{A} \longrightarrow \mathfrak{B}.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

æ

Continuous bounded homomorphisms from homomorphisms

Given: homomorphism

$$\varphi: \mathfrak{A} \longrightarrow \mathfrak{B}.$$

Construct: dual continuous, bounded homomorphism

 $\vartheta:\mathfrak{V}\longrightarrow\mathfrak{U}.$

(ロ) (同) (E) (E) (E)

Continuous bounded homomorphisms from homomorphisms

Given: homomorphism

$$\varphi: \mathfrak{A} \longrightarrow \mathfrak{B}.$$

Construct: dual continuous, bounded homomorphism

$$\vartheta : \mathfrak{V} \longrightarrow \mathfrak{U}.$$

Definition: for each s in 𝔅,

$$\vartheta(s) = r$$
 if and only if $\varphi^{-1}(Y_s) = X_r$,

(clopen sets containing s are inversely mapped to clopen sets containing r)

高 とう ヨン うまと

Continuous bounded homomorphisms from homomorphisms

Given: homomorphism

$$\varphi: \mathfrak{A} \longrightarrow \mathfrak{B}.$$

Construct: dual continuous, bounded homomorphism

$$\vartheta:\mathfrak{V}\longrightarrow\mathfrak{U}.$$

▶ Definition: for each *s* in 𝔅,

$$\vartheta(s) = r$$
 if and only if $\varphi^{-1}(Y_s) = X_r$,

(clopen sets containing s are inversely mapped to clopen sets containing r)

►
$$X_r = \{F \in A : r \in F\}$$
 and $Y_s = \{G \in B : s \in G\}$.

Theorem [strengthens Goldblatt; see also Halmos, Hansoul]

There is a bijective correspondence between: continuous bounded homomorphisms $\vartheta : \mathfrak{V} \longrightarrow \mathfrak{U}$, and homomorphisms $\varphi : \mathfrak{A} \longrightarrow \mathfrak{B}$.

Theorem [strengthens Goldblatt; see also Halmos, Hansoul]

There is a bijective correspondence between: continuous bounded homomorphisms $\vartheta : \mathfrak{V} \longrightarrow \mathfrak{U}$, and homomorphisms $\varphi : \mathfrak{A} \longrightarrow \mathfrak{B}$.

Each morphism determines its dual via the equivalence

$$u \in \varphi(F)$$
 if and only if $\vartheta(u) \in F$

for F in \mathfrak{A} and u in \mathfrak{U} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem [strengthens Goldblatt; see also Halmos, Hansoul]

There is a bijective correspondence between: continuous bounded homomorphisms $\vartheta : \mathfrak{V} \longrightarrow \mathfrak{U}$, and homomorphisms $\varphi : \mathfrak{A} \longrightarrow \mathfrak{B}$.

Each morphism determines its dual via the equivalence

$$u \in \varphi(F)$$
 if and only if $\vartheta(u) \in F$

for F in \mathfrak{A} and u in \mathfrak{U} .

• Each morphism is equal to its second dual.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem [strengthens Goldblatt; see also Halmos, Hansoul]

There is a bijective correspondence between: continuous bounded homomorphisms $\vartheta : \mathfrak{V} \longrightarrow \mathfrak{U}$, and homomorphisms $\varphi : \mathfrak{A} \longrightarrow \mathfrak{B}$.

Each morphism determines its dual via the equivalence

$$u \in \varphi(F)$$
 if and only if $\vartheta(u) \in F$

for F in \mathfrak{A} and u in \mathfrak{U} .

- Each morphism is equal to its second dual.
- Each morphism is one-to-one if and only if its dual is onto.

ヘロン 人間 とくほど くほとう

Theorem [strengthens Goldblatt; see also Halmos, Hansoul]

There is a bijective correspondence between: continuous bounded homomorphisms $\vartheta : \mathfrak{V} \longrightarrow \mathfrak{U}$, and homomorphisms $\varphi : \mathfrak{A} \longrightarrow \mathfrak{B}$.

Each morphism determines its dual via the equivalence

$$u \in \varphi(F)$$
 if and only if $\vartheta(u) \in F$

for F in \mathfrak{A} and u in \mathfrak{U} .

- Each morphism is equal to its second dual.
- Each morphism is one-to-one if and only if its dual is onto.
- The duality reverses compositions.

ヘロン 人間 とくほど くほとう

Categories

Dually equivalent categories [Goldblatt]:

→ Ξ → < Ξ →</p>

A ■

Categories

Dually equivalent categories [Goldblatt]:

 Category of relational spaces with continuous bounded homomorphisms,

高 とう モン・ く ヨ と

3

Categories

Dually equivalent categories [Goldblatt]:

- Category of relational spaces with continuous bounded homomorphisms,
- Category of Boolean algebras with normal operators, and with homomorphisms.

伺 とう ほう く きょう

Ideals are now arbitrary; they need not be complete.

回 と く ヨ と く ヨ と

- Ideals are now arbitrary; they need not be complete.
- Ideals form a complete lattice under inclusion.

高 とう モン・ く ヨ と

- Ideals are now arbitrary; they need not be complete.
- Ideals form a complete lattice under inclusion.
- ▶ Definition: An open set H in a relational space 𝔅 is special if for every pair of clopen sets F, G,

$$(F \subseteq H \text{ or } G \subseteq H) \text{ implies } R^*(F \times G) \subseteq H$$
,

where

伺下 イヨト イヨト

- Ideals are now arbitrary; they need not be complete.
- Ideals form a complete lattice under inclusion.
- ▶ Definition: An open set H in a relational space 𝔅 is special if for every pair of clopen sets F, G,

$$(F \subseteq H \text{ or } G \subseteq H) \text{ implies } R^*(F \times G) \subseteq H$$
,

where

- ▶ $R(F \times G) = \{t \in U : R^*(r, s, t) \text{ for some } r \in F \text{ and } s \in G\}.$
- Special open sets form a complete lattice under inclusion.

・ 同 ト ・ ヨ ト ・ ヨ ト

Special open sets from ideals

 \blacktriangleright \mathfrak{U} is a relational space.

回 と く ヨ と く ヨ と

æ

Special open sets from ideals

- \mathfrak{U} is a relational space.
- \mathfrak{A} is the dual algebra of clopen sets.

回 と く ヨ と く ヨ と

Special open sets from ideals

- \mathfrak{U} is a relational space.
- \mathfrak{A} is the dual algebra of clopen sets.
- Given: ideal M in \mathfrak{A} .

・日・ ・ヨ・ ・ヨ・

3

Special open sets from ideals

- \mathfrak{U} is a relational space.
- \mathfrak{A} is the dual algebra of clopen sets.
- Given: ideal M in \mathfrak{A} .
- Construct: dual special open subset H of \mathfrak{U} .

伺下 イヨト イヨト

Special open sets from ideals

- \mathfrak{U} is a relational space.
- \mathfrak{A} is the dual algebra of clopen sets.
- Given: ideal M in \mathfrak{A} .
- Construct: dual special open subset H of \mathfrak{U} .
- ▶ Definition: *H* is the union of the clopen sets that belong to *M*.

伺下 イヨト イヨト
Ideals from special open sets

• Given: special open subset H of \mathfrak{U} .

回 と く ヨ と く ヨ と

Ideals from special open sets

- Given: special open subset H of \mathfrak{U} .
- Construct: dual ideal M in \mathfrak{A} .

回 と く ヨ と く ヨ と

Ideals from special open sets

- Given: special open subset H of \mathfrak{U} .
- Construct: dual ideal M in \mathfrak{A} .
- Definition: M consists of the clopen subsets of H.

高 とう モン・ く ヨ と

Theorem

There is a bijective correspondence between ideals and special open sets.

回 と く ヨ と く ヨ と

Theorem

There is a bijective correspondence between ideals and special open sets.

• The dual of every ideal in \mathfrak{A} is a special open subset of \mathfrak{U} .

伺下 イヨト イヨト

Theorem

There is a bijective correspondence between ideals and special open sets.

- The dual of every ideal in \mathfrak{A} is a special open subset of \mathfrak{U} .
- ▶ The dual of every special open subset of 𝔅 is an ideal in 𝔅.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

There is a bijective correspondence between ideals and special open sets.

- The dual of every ideal in \mathfrak{A} is a special open subset of \mathfrak{U} .
- The dual of every special open subset of \mathfrak{U} is an ideal in \mathfrak{A} .
- The second dual of every ideal and of every special open set is itself.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

There is a bijective correspondence between ideals and special open sets.

- The dual of every ideal in \mathfrak{A} is a special open subset of \mathfrak{U} .
- The dual of every special open subset of \mathfrak{U} is an ideal in \mathfrak{A} .
- The second dual of every ideal and of every special open set is itself.
- The function mapping each ideal to its dual special open set is a lattice isomorphism.

(4 同) (4 回) (4 回)

• Definition: \mathfrak{V} is an *inner subspace* of \mathfrak{U} if:

æ

- ▶ Definition: 𝔅 is an *inner subspace* of 𝔅 if:
- \mathfrak{V} is algebraically an inner substructure of \mathfrak{V} ,

回 と く ヨ と く ヨ と

- Definition: \mathfrak{V} is an *inner subspace* of \mathfrak{U} if:
- \mathfrak{V} is algebraically an inner substructure of \mathfrak{V} ,
- The topology on $\mathfrak V$ is inherited from the topology on $\mathfrak U$,

伺下 イヨト イヨト

- Definition: \mathfrak{V} is an *inner subspace* of \mathfrak{U} if:
- \mathfrak{V} is algebraically an inner substructure of \mathfrak{V} ,
- The topology on $\mathfrak V$ is inherited from the topology on $\mathfrak U$,
- \mathfrak{V} is a relational space.

高 とう モン・ く ヨ と

The universes of inner subspaces of \$\mathcal{L}\$ are just complements of special open sets.

白 ト イヨト イヨト

- The universes of inner subspaces of \$\mathcal{L}\$ are just complements of special open sets.
- Call them special closed sets.

個 と く ヨ と く ヨ と …

- The universes of inner subspaces of \$\mathcal{L}\$ are just complements of special open sets.
- ► Call them *special closed sets*.
- Replace special open sets by special closed sets in preceding discussion.

高 とう ヨン うまと

- The universes of inner subspaces of \$\mathcal{L}\$ are just complements of special open sets.
- Call them *special closed sets*.
- Replace special open sets by special closed sets in preceding discussion.
- Result: a dual lattice isomorphism from ideals to special closed sets.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Duality for quotients and inner subspaces

Theorem

 $\mathfrak U$ a relational space and $\mathfrak A$ its dual algebra of clopen sets.

 ${\mathfrak V}$ is an inner subspace of ${\mathfrak U},$

M is the dual ideal of the special closed set V.

高 とう ヨン うまと

Duality for quotients and inner subspaces

Theorem

 $\mathfrak U$ a relational space and $\mathfrak A$ its dual algebra of clopen sets.

 ${\mathfrak V}$ is an inner subspace of ${\mathfrak U}$,

M is the dual ideal of the special closed set V.

• The dual algebra of \mathfrak{V} is isomorphic to the quotient \mathfrak{A}/M .

高 とう モン・ く ヨ と

Duality for quotients and inner subspaces

Theorem

 $\mathfrak U$ a relational space and $\mathfrak A$ its dual algebra of clopen sets.

 ${\mathfrak V}$ is an inner subspace of ${\mathfrak U},$

M is the dual ideal of the special closed set V.

- The dual algebra of \mathfrak{V} is isomorphic to the quotient \mathfrak{A}/M .
- The dual relational space of \mathfrak{A}/M is homeo-isomorphic to \mathfrak{V} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Subalgebras and quotient spaces

Similar duality between:

白 ト イヨト イヨト

Subalgebras and quotient spaces

- Similar duality between:
- Subuniverse of algebras,

(4) (5) (4) (5) (4)

Subalgebras and quotient spaces

- Similar duality between:
- Subuniverse of algebras,
- Bounded Boolean congruences on relational spaces, and between

Subalgebras and quotient spaces

- Similar duality between:
- Subuniverse of algebras,
- Bounded Boolean congruences on relational spaces, and between
- Subalgebras and quotient relational spaces (modulo bounded Boolean congruences)

• Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.
- Form compactifications \mathfrak{V} of \mathfrak{U} :

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.
- Form compactifications \mathfrak{V} of \mathfrak{U} :
 - \mathfrak{V} is relational space (and hence compact).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.
- Form compactifications \mathfrak{V} of \mathfrak{U} :
 - \mathfrak{V} is relational space (and hence compact).
 - \mathfrak{U} is inner substructure of \mathfrak{V} .

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.
- ▶ Form compactifications 𝔅 of 𝔅:
 - \mathfrak{V} is relational space (and hence compact).
 - \mathfrak{U} is inner substructure of \mathfrak{V} .
 - Topology on \mathfrak{U} is inherited from \mathfrak{V} .

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.
- Form compactifications \mathfrak{V} of \mathfrak{U} :

 - \mathfrak{U} is inner substructure of \mathfrak{V} .
 - Topology on \mathfrak{U} is inherited from \mathfrak{V} .
 - Universe of \$\mathcal{U}\$ is locally compact, dense subset of \$\varnotharton\$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.
- Form compactifications \mathfrak{V} of \mathfrak{U} :
 - \mathfrak{V} is relational space (and hence compact).
 - \mathfrak{U} is inner substructure of \mathfrak{V} .
 - Topology on \mathfrak{U} is inherited from \mathfrak{V} .
 - Universe of \$\mathcal{U}\$ is locally compact, dense subset of \$\varnotharton\$.
- Lattice pre-order on compactifications:

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.
- ▶ Form compactifications 𝔅 of 𝔅:
 - \mathfrak{V} is relational space (and hence compact).
 - \mathfrak{U} is inner substructure of \mathfrak{V} .
 - Topology on \mathfrak{U} is inherited from \mathfrak{V} .
 - Universe of \$\mathcal{U}\$ is locally compact, dense subset of \$\varnotheta\$.
- Lattice pre-order on compactifications:
- 𝔐 ≤ 𝔅 if there is a continuous bounded homomorphism from 𝔅 to 𝔅 that is the identity function on 𝔅.

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.
- ▶ Form compactifications 𝔅 of 𝔅:
 - ▶ 𝔅 is relational space (and hence compact).
 - \mathfrak{U} is inner substructure of \mathfrak{V} .
 - Topology on \mathfrak{U} is inherited from \mathfrak{V} .
 - Universe of \mathfrak{U} is locally compact, dense subset of \mathfrak{V} .
- Lattice pre-order on compactifications:
- $\mathfrak{W} \leq \mathfrak{V}$ if there is a continuous bounded homomorphism from \mathfrak{V} to \mathfrak{W} that is the identity function on \mathfrak{U} .
- Equivalent compactifications: $\mathfrak{W} \leq \mathfrak{V}$ and $\mathfrak{V} \leq \mathfrak{W}$.

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Construct: union $\mathfrak{U} = \bigcup_i \mathfrak{U}_i$ with union topology.
- Problem: compactness fails.
- ▶ Form compactifications 𝔅 of 𝔅:

 - \mathfrak{U} is inner substructure of \mathfrak{V} .
 - Topology on \mathfrak{U} is inherited from \mathfrak{V} .
 - Universe of \$\mu\$ is locally compact, dense subset of \$\varnotharton\$.
- Lattice pre-order on compactifications:
- $\mathfrak{W} \leq \mathfrak{V}$ if there is a continuous bounded homomorphism from \mathfrak{V} to \mathfrak{W} that is the identity function on \mathfrak{U} .
- Equivalent compactifications: $\mathfrak{W} \leq \mathfrak{V}$ and $\mathfrak{V} \leq \mathfrak{W}$.
- Equivalence classes of compactifications form complete lattice.

(ロ) (同) (E) (E) (E)

Intermediate subdirect products

• Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Let \mathfrak{A}_i be dual algebra of clopen subsets of \mathfrak{U}_i .

高 とう モン・ く ヨ と

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Let \mathfrak{A}_i be dual algebra of clopen subsets of \mathfrak{U}_i .
- Construct: internal direct product $\mathfrak{A} = \prod_{i} \mathfrak{A}_{i}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Let \mathfrak{A}_i be dual algebra of clopen subsets of \mathfrak{U}_i .
- Construct: internal direct product $\mathfrak{A} = \prod_i \mathfrak{A}_i$.
 - This is like forming the internal direct product of groups instead of the usual (external) direct product.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Let \mathfrak{A}_i be dual algebra of clopen subsets of \mathfrak{U}_i .
- Construct: internal direct product $\mathfrak{A} = \prod_i \mathfrak{A}_i$.
 - This is like forming the internal direct product of groups instead of the usual (external) direct product.
- Construct: weak internal product $\mathfrak{D} = \prod_{i}^{\mathsf{weak}} \mathfrak{A}_{i}$.

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Let \mathfrak{A}_i be dual algebra of clopen subsets of \mathfrak{U}_i .
- Construct: internal direct product $\mathfrak{A} = \prod_{i} \mathfrak{A}_{i}$.
 - This is like forming the internal direct product of groups instead of the usual (external) direct product.
- Construct: weak internal product $\mathfrak{D} = \prod_{i}^{\mathsf{weak}} \mathfrak{A}_{i}$.
 - This internal version of the weak direct product construction, similar to weak direct product of groups.

イロト イポト イラト イラト 一日

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Let \mathfrak{A}_i be dual algebra of clopen subsets of \mathfrak{U}_i .
- Construct: internal direct product $\mathfrak{A} = \prod_i \mathfrak{A}_i$.
 - This is like forming the internal direct product of groups instead of the usual (external) direct product.
- Construct: weak internal product $\mathfrak{D} = \prod_{i}^{\mathsf{weak}} \mathfrak{A}_{i}$.
 - This internal version of the weak direct product construction, similar to weak direct product of groups.
- ► An *intermediate subdirect product* is a subalgebra of 𝔅 that includes 𝔅.

- Given: disjoint system $(\mathfrak{U}_i : i \in I)$ of relational spaces.
- Let \mathfrak{A}_i be dual algebra of clopen subsets of \mathfrak{U}_i .
- Construct: internal direct product $\mathfrak{A} = \prod_i \mathfrak{A}_i$.
 - This is like forming the internal direct product of groups instead of the usual (external) direct product.
- Construct: weak internal product $\mathfrak{D} = \prod_{i}^{\text{weak}} \mathfrak{A}_{i}$.
 - This internal version of the weak direct product construction, similar to weak direct product of groups.
- ► An *intermediate subdirect product* is a subalgebra of 𝔅 that includes 𝔅.
- Intermediate subdirect products form lattice under subalgebra relation.

• Given: compactification \mathfrak{V} of \mathfrak{U} .

高 とう モン・ く ヨ と

- Given: compactification \mathfrak{V} of \mathfrak{U} .
- Let \mathfrak{B} be dual algebra of clopen subsets of \mathfrak{V} .

高 とう モン・ く ヨ と

- Given: compactification \mathfrak{V} of \mathfrak{U} .
- Let \mathfrak{B} be dual algebra of clopen subsets of \mathfrak{V} .
- ► Construct: isomorphic copy of 𝔅 as an intermediate subdirect product (between 𝔅 and 𝔅).

伺 と く き と く き と

- Given: compactification \mathfrak{V} of \mathfrak{U} .
- Let \mathfrak{B} be dual algebra of clopen subsets of \mathfrak{V} .
- ► Construct: isomorphic copy of 𝔅 as an intermediate subdirect product (between 𝔅 and 𝔅).
- Definition: relativization of \mathfrak{B} to U:

伺 と く き と く き と

- Given: compactification \mathfrak{V} of \mathfrak{U} .
- Let \mathfrak{B} be dual algebra of clopen subsets of \mathfrak{V} .
- ► Construct: isomorphic copy of 𝔅 as an intermediate subdirect product (between 𝔅 and 𝔅).
- Definition: relativization of \mathfrak{B} to U:
- ▶ $B_0 = \{F \cap U : F \in B\}$ is subuniverse between \mathfrak{D} and \mathfrak{A} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Given: compactification \mathfrak{V} of \mathfrak{U} .
- Let \mathfrak{B} be dual algebra of clopen subsets of \mathfrak{V} .
- ► Construct: isomorphic copy of 𝔅 as an intermediate subdirect product (between 𝔅 and 𝔅).
- Definition: relativization of \mathfrak{B} to U:
- ▶ $B_0 = \{F \cap U : F \in B\}$ is subuniverse between \mathfrak{D} and \mathfrak{A} .
- $\blacktriangleright \ \mathfrak{B}$ is isomorphic to \mathfrak{B}_0 via relativization isomorphism

$$F \longrightarrow F \cap U.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline Introduction Algebraic duality Topological duality

Compactifications from intermediate subdirect products

▶ Given: intermediate subdirect product 𝔅 (between 𝔅 and 𝔅)

高 とう モン・ く ヨ と

Compactifications from intermediate subdirect products

- ▶ Given: intermediate subdirect product 𝔅 (between 𝔅 and 𝔅)
- Let \mathfrak{V} be dual relational space of \mathfrak{C} .

高 とう ヨン うまと

Compactifications from intermediate subdirect products

- Given: intermediate subdirect product \mathfrak{C} (between \mathfrak{D} and \mathfrak{A})
- Let \mathfrak{V} be dual relational space of \mathfrak{C} .
- ► Construct: homeo-isomorphic copy of 𝔅 as a dense, locally compact inner subspace of 𝔅.

高 とう モン・ く ヨ と

Compactifications from intermediate subdirect products

- ▶ Given: intermediate subdirect product 𝔅 (between 𝔅 and 𝔅)
- Let \mathfrak{V} be dual relational space of \mathfrak{C} .
- ► Construct: homeo-isomorphic copy of 𝔅 as a dense, locally compact inner subspace of 𝔅.
- ► Use the Exchange Theorem to get a compactification of u with dual algebra isomorphic to via relativization.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Duality for subdirect products and compactifications

Theorem

 \mathfrak{U} is the union of a disjoint system of relational spaces. \mathfrak{A} and \mathfrak{D} are the internal direct and weak direct products of the corresponding system of dual algebras.

伺 と く き と く き と

Duality for subdirect products and compactifications

Theorem

 \mathfrak{U} is the union of a disjoint system of relational spaces. \mathfrak{A} and \mathfrak{D} are the internal direct and weak direct products of the corresponding system of dual algebras.

 Equivalent compactifications of \$\mu\$ have dual algebras that are isomorphic via relativization to the same intermediate subdirect product (between \$\mu\$ and \$\mu\$).

・ 同 ト ・ ヨ ト ・ ヨ ト

Duality for subdirect products and compactifications

Theorem

 \mathfrak{U} is the union of a disjoint system of relational spaces. \mathfrak{A} and \mathfrak{D} are the internal direct and weak direct products of the corresponding system of dual algebras.

- Equivalent compactifications of \$\mu\$ have dual algebras that are isomorphic via relativization to the same intermediate subdirect product (between \$\mu\$ and \$\mu\$).
- The function mapping each equivalence class of compactifications of \$\mathcal{L}\$ to the dual intermediate subdirect product (between \$\mathcal{D}\$ and \$\mathcal{L}\$) is a lattice isomorphism.

(日本) (日本) (日本)

Duality for direct products

Theorem

 \mathfrak{U} is the union of a disjoint system of relational spaces. \mathfrak{A} is the internal direct product of the corresponding system of dual algebras.

伺 とう きょう とう とう

Duality for direct products

Theorem

 $\mathfrak U$ is the union of a disjoint system of relational spaces.

 ${\mathfrak A}$ is the internal direct product of the corresponding system of dual algebras.

► The dual algebra of the Stone-Čech compactification of 𝔅 is isomorphic via relativization to the direct product 𝔅.

伺 と く き と く き と

Outline Introduction Algebraic duality Topological duality

Hybrid duality motivation

 (Dwinger): the dual space of the Boolean algebra of subsets of a set U is

白 ト イヨト イヨト

Hybrid duality motivation

- (Dwinger): the dual space of the Boolean algebra of subsets of a set U is
- The Stone-Čech compactification of U endowed with the discrete topology.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Hybrid duality motivation

- (Dwinger): the dual space of the Boolean algebra of subsets of a set U is
- The Stone-Čech compactification of U endowed with the discrete topology.
- Problem: generalize this result to complex algebras of relational structures.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 \blacktriangleright Given: a relational structure ${\mathfrak U}$ without any topology.

・ロト ・回ト ・ヨト ・ヨト

æ

- ► Given: a relational structure 𝔅 without any topology.
- ▶ Goal: characterize the dual relational space of 𝔅𝑘(U) and some of its subalgebras.

・日本 ・ モン・ ・ モン

- ► Given: a relational structure 𝔅 without any topology.
- ► Goal: characterize the dual relational space of 𝔅𝑘(U) and some of its subalgebras.
- ▶ Idea: endow 𝔅 with the discrete topology.

・回 ・ ・ ヨ ・ ・ ヨ ・

- ► Given: a relational structure 𝔅 without any topology.
- ► Goal: characterize the dual relational space of 𝔅𝑘(U) and some of its subalgebras.
- ▶ Idea: endow 𝔅 with the discrete topology.
- ▶ Result: discrete 𝔅 is a locally compact relational space.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- ► Given: a relational structure 𝔅 without any topology.
- ► Goal: characterize the dual relational space of 𝔅𝑘(U) and some of its subalgebras.
- ▶ Idea: endow 𝔅 with the discrete topology.
- ▶ Result: discrete 𝔅 is a locally compact relational space.
- ▶ Problem: discrete 𝔅 does not always have a compactification.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- ► Given: a relational structure 𝔅 without any topology.
- ► Goal: characterize the dual relational space of 𝔅𝑘(U) and some of its subalgebras.
- ▶ Idea: endow 𝔅 with the discrete topology.
- ▶ Result: discrete 𝔅 is a locally compact relational space.
- Problem: discrete \$\mathcal{L}\$ does not always have a compactification.
- Reason: requirement of being inner substructure in definition of compactification is too strong because of the relations.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ► Given: a relational structure 𝔅 without any topology.
- ► Goal: characterize the dual relational space of 𝔅𝑘(U) and some of its subalgebras.
- ▶ Idea: endow 𝔅 with the discrete topology.
- ▶ Result: discrete 𝔅 is a locally compact relational space.
- ▶ Problem: discrete 𝔅 does not always have a compactification.
- Reason: requirement of being inner substructure in definition of compactification is too strong because of the relations.
- Solution: weaken this requirement to "weak inner substructure" to get notion of weak compactification.

(1) マン・ション・ (1) マン・

- ► Given: a relational structure 𝔅 without any topology.
- ► Goal: characterize the dual relational space of 𝔅𝑘(U) and some of its subalgebras.
- ▶ Idea: endow 𝔅 with the discrete topology.
- ▶ Result: discrete 𝔅 is a locally compact relational space.
- ▶ Problem: discrete 𝔅 does not always have a compactification.
- Reason: requirement of being inner substructure in definition of compactification is too strong because of the relations.
- Solution: weaken this requirement to "weak inner substructure" to get notion of weak compactification.
- Part of solution: develop duality theory for weakly bounded homomorphisms and homomorphisms.

・ロン ・回 と ・ 回 と ・ 回 と

Duality for subalgebras and weak compactifications

Theorem

 ${\mathfrak U}$ is relational structure endowed with discrete topology.

高 とう モン・ く ヨ と

Duality for subalgebras and weak compactifications

Theorem

 \mathfrak{U} is relational structure endowed with discrete topology. $\mathfrak{A} = \mathfrak{Cm}(U).$

個 と く ヨ と く ヨ と …

Duality for subalgebras and weak compactifications

Theorem

- $\mathfrak U$ is relational structure endowed with discrete topology.
- $\mathfrak{A} = \mathfrak{Cm}(U).$
- $\mathfrak D$ is the subalgebra of $\mathfrak A$ generated by singleton subsets.

高 とう モン・ く ヨ と
Duality for subalgebras and weak compactifications

Theorem

- $\mathfrak U$ is relational structure endowed with discrete topology.
- $\mathfrak{A} = \mathfrak{Cm}(U).$
- $\mathfrak D$ is the subalgebra of $\mathfrak A$ generated by singleton subsets.
 - ► Equivalent weak compactifications of 𝔅 have dual algebras that are isomorphic via relativization to the same intermediate subalgebra between 𝔅 and 𝔅.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Duality for subalgebras and weak compactifications

Theorem

- $\mathfrak U$ is relational structure endowed with discrete topology.
- $\mathfrak{A} = \mathfrak{Cm}(U).$
- $\mathfrak D$ is the subalgebra of $\mathfrak A$ generated by singleton subsets.
 - ► Equivalent weak compactifications of 𝔅 have dual algebras that are isomorphic via relativization to the same intermediate subalgebra between 𝔅 and 𝔅.
 - The function mapping each equivalence class of weak compactifications of \$\mathcal{L}\$ to the dual intermediate subalgebra between \$\mathcal{D}\$ and \$\mathcal{L}\$ is a lattice isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

Duality for subalgebras and weak compactifications

Theorem

- $\mathfrak U$ is relational structure endowed with discrete topology.
- $\mathfrak{A} = \mathfrak{Cm}(U).$
- $\mathfrak D$ is the subalgebra of $\mathfrak A$ generated by singleton subsets.
 - ► Equivalent weak compactifications of 𝔅 have dual algebras that are isomorphic via relativization to the same intermediate subalgebra between 𝔅 and 𝔅.
 - ► The function mapping each equivalence class of weak compactifications of 𝔅 to the dual intermediate subalgebra between 𝔅 and 𝔅 is a lattice isomorphism.
 - ► 𝔅𝑘(U) is the dual algebra of the Stone-Čech weak compactification of 𝔅.

(日本) (日本) (日本)

Corollary

U is a set endowed with discrete topology.

Corollary

U is a set endowed with discrete topology. \mathfrak{A} is algebra of all subsets of U.

Corollary

U is a set endowed with discrete topology.

 \mathfrak{A} is algebra of all subsets of U.

 \mathfrak{D} is the subalgebra of finite/cofinite subsets of U.

伺 ト イヨト イヨト

Corollary

U is a set endowed with discrete topology.

 \mathfrak{A} is algebra of all subsets of U.

 \mathfrak{D} is the subalgebra of finite/cofinite subsets of U.

▶ Equivalent compactifications of *U* have dual Boolean algebras that are isomorphic via relativization to the same intermediate subalgebra between 𝔅 and 𝔅.

伺 ト イヨト イヨト

Corollary

U is a set endowed with discrete topology.

 \mathfrak{A} is algebra of all subsets of U.

 \mathfrak{D} is the subalgebra of finite/cofinite subsets of U.

- ▶ Equivalent compactifications of *U* have dual Boolean algebras that are isomorphic via relativization to the same intermediate subalgebra between 𝔅 and 𝔅.
- The function mapping each equivalence class of compactifications of U to the dual intermediate subalgebra between D and A is a lattice isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Corollary

U is a set endowed with discrete topology.

 \mathfrak{A} is algebra of all subsets of U.

 \mathfrak{D} is the subalgebra of finite/cofinite subsets of U.

- ▶ Equivalent compactifications of *U* have dual Boolean algebras that are isomorphic via relativization to the same intermediate subalgebra between 𝔅 and 𝔅.
- ► The function mapping each equivalence class of compactifications of U to the dual intermediate subalgebra between D and A is a lattice isomorphism.
- ► (Dwinger) A is the dual algebra of the Stone-Čech compactification of U.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 Givant, S. R.: Duality theories for Boolean algebras with operators, Springer Verlag, to appear.

- Givant, S. R.: Duality theories for Boolean algebras with operators, Springer Verlag, to appear.
- Goldblatt, R. I.: Varieties of complex algebras, Annals of Pure and Applied Logic 44 (1989).

- Givant, S. R.: Duality theories for Boolean algebras with operators, Springer Verlag, to appear.
- Goldblatt, R. I.: Varieties of complex algebras, Annals of Pure and Applied Logic 44 (1989).
- Halmos, P. R.: Algebraic logic, I. Monadic Boolean algebras, Compositio Mathematica 12 (1955).

個 と く ヨ と く ヨ と …

- Givant, S. R.: Duality theories for Boolean algebras with operators, Springer Verlag, to appear.
- Goldblatt, R. I.: Varieties of complex algebras, Annals of Pure and Applied Logic 44 (1989).
- Halmos, P. R.: Algebraic logic, I. Monadic Boolean algebras, Compositio Mathematica 12 (1955).
- ► Hansoul, G.: A duality for Boolean algebras with operators, *Algebra Universalis* **17** (1983).

・日・ ・ ヨ・ ・ ヨ・

- Givant, S. R.: Duality theories for Boolean algebras with operators, Springer Verlag, to appear.
- Goldblatt, R. I.: Varieties of complex algebras, Annals of Pure and Applied Logic 44 (1989).
- Halmos, P. R.: Algebraic logic, I. Monadic Boolean algebras, Compositio Mathematica 12 (1955).
- ► Hansoul, G.: A duality for Boolean algebras with operators, *Algebra Universalis* **17** (1983).
- Jónsson, B.: A survey of Boolean algebras with operators. In: Rosenberg, I.G. and Sabidussi, G. (eds.) Algebras and orders.

イロン イヨン イヨン イヨン

- Givant, S. R.: Duality theories for Boolean algebras with operators, Springer Verlag, to appear.
- Goldblatt, R. I.: Varieties of complex algebras, Annals of Pure and Applied Logic 44 (1989).
- Halmos, P. R.: Algebraic logic, I. Monadic Boolean algebras, Compositio Mathematica 12 (1955).
- Hansoul, G.: A duality for Boolean algebras with operators, Algebra Universalis 17 (1983).
- Jónsson, B.: A survey of Boolean algebras with operators. In: Rosenberg, I.G. and Sabidussi, G. (eds.) Algebras and orders.
- Jónsson, B. and Tarski, A.: Boolean algebras with operators. Part I, American Journal of Mathematics 73 (1951).

イロン イ部ン イヨン イヨン 三日

- Givant, S. R.: Duality theories for Boolean algebras with operators, Springer Verlag, to appear.
- Goldblatt, R. I.: Varieties of complex algebras, Annals of Pure and Applied Logic 44 (1989).
- Halmos, P. R.: Algebraic logic, I. Monadic Boolean algebras, Compositio Mathematica 12 (1955).
- Hansoul, G.: A duality for Boolean algebras with operators, Algebra Universalis 17 (1983).
- Jónsson, B.: A survey of Boolean algebras with operators. In: Rosenberg, I.G. and Sabidussi, G. (eds.) Algebras and orders.
- ► Jónsson, B. and Tarski, A.: Boolean algebras with operators. Part I, *American Journal of Mathematics* **73** (1951).
- Sambin, G. and Vaccaro, V.: Topology and duality in modal logic, Annals of Pure and Applied Logic 37 (1988).

(日) (同) (E) (E) (E)