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The ring of continuous real functions on a frame: C(L)

The frame of reals is the frame £(R) generated by all ordered pairs (p, q), where
p, g € Q, subject to the following relations:

(R1) (p,q) A(r,s)=(pVr,qNs),

(R2) (p,q) Vv (r,s) = (p,s) whenever p<r < q<s,
(R3) (p,q) =VA(r,s) [p<r<s<aq}

(R4) V, 4colp,q) =1.

The spectrum of £(R) is homeomorphic to the space R of reals endowed with the
euclidean topology.

Combining the natural isomorphism Top(X,XL) ~ Frm(L, OX) for L = £(R) with the
homeomorphism X £(RR) ~ R one obtains

| C(X) = Top(X. E) -+ Frm(£(R), 0X) |

Regarding the frame homomorphisms £(R) — L, for a general frame L, as the
continuous real functions on L provides a natural extension of the classical notion. They
form a lattice-ordered ring that we denote

\ C(L) = Frm(£(R), L) \




Lattice and algebraic operations in C(L)

Recall that the operations on the algebra C(L) are determined by the lattice-ordered
ring operations of QQ as follows:
(1) Foro =4, A, V:
(fog)(p,q) = V{f(r,s) Ag(t,u) | (r,s)o(t,u) C (p,q)}
where (-, ) stands for open interval in Q and the inclusion on the right means that
x oy € (p,q) whenever x € (r,s) and y € (¢, u).
(2) (-f)(p.q) = (=g, —p).
(3) For each r € Q, a nullary operation r defined by

( ) 1 ifp<r<g
r b - .
pa 0 otherwise.

(4) Foreach0 <A e @, (A-f)(p,q) =1(%,%).

‘ B. Banaschewski,
The real numbers in pointfree topology,
Textos de Matematica, Série B, 12, Univ. de Coimbra, 1997.



Part |: Extended real-valued functions

(based on joint work with Bernhard Banaschewski,)



The frame of extended reals: a first attempt

How to describe the frame £(R) of extended reals in terms of generators and relations?
The frame of extended reals is the frame £(R)£(R) generated by all ordered pairs
(p, q), where p, g € Q, subject to the following relations:
(R1) (p,gq)A(r,s)=(pVr,gAs),
(R2) (p.q) V (r,s) = (p,s) whenever p<r < q<s,
(R3) (p.q)=V{(r,s) I p<r<s<gq}
(R4) Vp,qe@(p7 q) =L
But this frame is precisely the one-point extension of E(@)!

The spectrum of 2(@) is not homeomorphic to the space R of extended reals endowed
with the euclidean topology. Indeed,

T X=RU{o0}

- - { \ --
A§ 7
p q

The one-point extension of the real line: OX = ORU {X}



The frame of extended reals

It is useful here to adopt an equivalent description of £(R) with the elements

(r7_): V(ras) and (—,S): \/(I’,S)

s€Q reQ
as primitive notions.

Specifically, the frame of reals £(R) is equivalently given by generators (r,—) and (—, s)
for r,s € Q subject to the defining relations

(r1) (r,—) A(—,s) =0 whenever r > s,

(r2) (r,—)V (—,s) =1 whenever r <s,

(r3) (r,—) = \/S>r(s,—), and (—,r) = \/S<,(—, s), for every r € Q,
(r4) V,egr—) =1=V, (7).

With (p, q) = (p,—) A (—, q) one goes back to (R1)—-(R4).



The frame of extended reals and extended continuous real functions
The frame of extended reals is the frame £(IR)£(IR) generated by generators (r,—) and
(—,s) for r,s € Q subject to the defining relations

(r1) (r,—) A (—,s) = 0 whenever r > s,

(r2) (r,—)V (—,s) =1 whenever r < s,

(r3) (r,—) =V.s,(s,—)and (—,r) =V, _,(—>5), for every r € Q,

(r4) \/reQ(r7_) =1= VrEQ(_7 r)'

The spectrum of £(R) is homeomorphic to the space R of extended reals endowed with
the euclidean topology.

Combining the natural isomorphism Top(X, ~L) ~ Frm(L, OX) for L = £(R) with the
homeomorphism ¥~ £(R) ~ R one obtains

C(X) = Top(X,R) — Frm(£(R), OX)

Regarding the frame homomorphisms £(R) — L, for a general frame L, as the extended
continuous real functions on L provides a natural extension of the classical notion.
Hence we denote

C(L) = Frm(£(R), L)




Lattice and algebraic operations in C(L) (equivalent characterization)

Recall that the operations on the algebra C(L) are determined by the lattice-ordered
ring operations of QQ as follows:
(1) Foro =4, A, V:
(fog)lp,—)= V f(r,—)ng(s,—) and (fog)(—aq)= V f(—r)Nng(—s)
p<ros ros<q
(2) (-f)(p,—) = f(— —p) and (-F)(— q) = f(—q,—).
(3) For each r € Q, a nullary operation r defined by

( ) 1 ifp<r q ( ) 1 ifr<gqg

r(p,—) = X an n—, = .

P 0 otherwise 9 0 otherwise.
= (= 9).

(4) Foreach0 <A e @, (A-f)(p,—) =1f(%,—) and (A-F)(—,q)

\ B. Banaschewski,
The real numbers in pointfree topology,
Textos de Matematica, Série B, 12, Univ. de Coimbra, 1997.



Lattice operations in C(L)

An analysis of the proof that C(L) is an f-ring shows that, by the same arguments, the
operations V, A and —(-) satisfy all identities which hold for the corresponding
operations of Q in C(L).

Hence, C(L) is a distributive lattice with join \/, meet A and an inversion given by —(-).
Moreover, it is, of course, bounded, with top 400 and bottom —oo, where

+00(p,—) =1= —oo(—, q) and +OO(—, q) =0= —oo(p,—).

Further, the partial order determined by this lattice structure is exactly the one
mentioned earlier:

f<g iff fvg=g iff fAg="f
iff f(r,—) <g(r,—)forallreQ
iff f(—,s)>g(r,—,s) forall s €Q.



Algebraic operations in C(L)
Things become more complicated in the case of addition and multiplication.
This is not a surprise if we think of the typical indeterminacies
—oc0o+o00 and 0-00
when dealing with the algebraic operations in C(X)
In the classical case, given f,g: X — R, the condition
f ({+oo}) g ({—oo}) = & = F ' ({—o0}) Ng ™" ({+00})

ensures that the addition f + g can be defined for all x € X just by the natural
convention

A+ (+o0) =400 =(F+00)+ A and A+ (—00) = —0co = (—o0) + A
for all A € R together with the usual (+00) + (+00) = +00 and the same for —oco.

Clearly enough, this condition is equivalent to

(Fveg) ' ({+oeh) N (Ff A g) ({—o0}) = 2.



Algebraic operations in C(L)
What about the algebraic operations in C(L)?: Addition

Let f,g € C(L), the natural definition of h = f + g: £(R) — L on generators would be:

hip,—) = V f(r,—=)Ag(s,—) and h(—q)= V f(—r)rg(—=s)

p<r+s r+s<q
But h ¢ C(L) in general! Indeed, h € C(L) if and only if

(V A0V Ven)A(Vel=nv Vfrn) =t

reQ reQ reQ reQ
Notation. For each f € C(L) let

af = \/ f(—r), a; =\ f(r,—) and ar=aj Nay = \/ f(r,s) = f(w).

reQ reQ r<s
ar is the pointfree counterpart of the domain of reality f ~*(R) of an f: X—R.

Note also that asr = af = a; = 1if and only if f € C(L).



Algebraic operations in C(L)

Definition. Let f,g € C(L). We say that f and g are sum compatible if
atvg V arn, =1 iff (af Vag)A(af vVar) =1
Theorem. Let f,g € C(L) and fh = +g: £(R) — L given by
(f+g)p,—)= V f(r—)ngls,—) and (f+g)(—aq)= V f(—r)rng(—s).

p<r+s r+s<q
Then f 4+ g € C(L) if and only if f and g are sum compatible.



Algebraic operations in C(L)

What about the algebraic operations in C(L)?: Multiplication

In the classical case, given f,g: X — R the condition
FH ({00, +oo}) Ng ' ({0}) = @ = F1({0}) N g~ ({~o00, +00})

ensures that the multiplication f - g can be defined for all x € X just by the natural
conventions
A (o) = +oo = (£00) - A

for all A > 0 and
A+ (o) = Foo = (£o0) - A

for all A < 0 together with the usual

(£00) - (£00) = 400 and  (£o0) - (Foo) = —cc0.

Notation. Recall that in a frame L, a cozero element is an element of the form

cozf = f((—,0) vV (0,—)) = V{f(p,0) V£(0,q) | p <0< qinQ}

for some f € C(L). This is the pointfree counterpart to the notion of a cozero set for
ordinary continuous real functions.



Algebraic operations in C(L)

Definition. Let f,g € C(L). We say that f and g are product compatible if

(ar Nag) V(cozf ANcozg)=1 iff (arVcozg)A(agVcozf)=1.

Theorem. Let f,g € C(L) and f - g: £(R) — L given by

(f-g)p,—)= V f(rr—)ng(s,—) and (f-g)(—aq)= V f(—r)rg(—s)

p<r-s r-s<q

Then f - g € C(L) if and only if f and g are product compatible.



Extended real functions: an application

Representation Theorem (Johnson, 1962)

Let A be an archimedean f-ring with N(A) = {0}. Then there is a locally compact
Hausdorff space X and an f-ring A of almost finite extended real functionsalmost finite
extended real functions on X which separates points and closed setswhich separates
points and closed sets in X, and an isomorphism A — A.

‘ D.J. Johnson,
On a Representation Theory for a Class of Archimedean Lattice-Ordered Rings,

Proc. London Math. Soc, 12 (1962), 207-225.

Question: Is it possible to deal with families of “almost finite extended real functions
which separates points and closed sets” in a pointfree setting?

Answer: Yes, we can! IPodemos!



Extended real functions: an application
Almost finite extended functions.

Recall that we have C(L) = {f € C(L) | ar = 1}. Now, for any frame L, let

= {f € C(L) | ar is dense}

This definition extends the familiar classical notion to the pointfree setting:

Given an extended real continuous function u: X — R we have that the corresponding
frame homomorphisms Ou = u™! € C(OX) and

Ou e D(OX) iff u '[R]is dense in X iff ue D(X).

The correspondence L — D(L) is functorial for skeletal homomorphisms, that is, the
h: L — M which take dense elements to dense elements



Extended real functions: an application

Theorem. For any L, there exists an inversion lattice embedding d,: D(L) — C(BL)
such that

ou(F)(r,—=) =f(r,=)" and 6. (F)(—r)=f(—r)"
which preserves the partial addition and multiplication of D(L).
Moreover, d; is onto if and only if L is extremally disconnected and then the partial
operations are total so that §; is a lattice-ordered ring isomorphism.

¥ B. Banaschewski, JGG and JP
Extended real functions in Pointfree Topology,
Journal of Pure and Applied Algebra 216 (2012), no. 4, 905-922.



Extended real functions: an application
Subfamilies in C(X) which separates points from closed sets in X.
In Top — the category of all topological spaces — let:

f: X—=Ye forall feF.

The family F separates points from closed sets if for each closed K C X and x € X \ K,
there exists an f € F with f(x) ¢ f(K).

Avoiding points. The family F separates points from closed sets iff for each closed

K C X o
K= f(f(K)).
fer

Avoiding closed sets. The family F separates points from closed sets iff for each closed
UeOX

U= U fH(YAF(X\U)) = ,Ef F(£(U))

feFr

(where f.: OX — OYs is the right adjoint of the inverse image map f~*: OY; — OX).



Extended real functions: an application
Separating subfamilies in C(L).

In Frm let:
h: M, - L forall heH.

Definition. The family H is said to be separating if

a= V\ h(h.(a)) forall aelL.
heH

(Note that if # = {h} then H is separating iff h is an embedding.)

This definition extends a familiar classical notion to the pointfree setting:

Let u: X — Y, be in Top for all u € F, and let OF be the corresponding family of
frame homomorphisms Ou = u i 0Y, — OX.

Then

F separates points from closed sets in Top iff OJF is separating in Frm.



Part |l: Partial real-valued functions

(based on joint work with Imanol Mozo Carollo)



Order completeness of C(L) and C(L)
Certainly both C(L) and C(L) fail to be Dedekind complete. But. ..why?

Let {fi}ics C C(L) and f € C(L) be such that f; < f forall j € I.
The natural candidate h: £(R) — L would be defined for each r € Q by

h(r,—=) =V fi(r—) and  h(—r)= V (A fi(—5)).

iel s<r il

Recall that
(r1) if r <'s, then h(—,r) A h(s,—) =0,
(r2) if s < r, then h(—,r) V h(s,—) =1,

heC(l) <

(T3) h(r7_) = V5>, h(S,—) and h(_a r) = \/5<, h(_a S), v
(|’4) \/rEQ h(l’,—) =1= \/rGQ h(_7 f)-

(r2) if s < r, then h(—, r) V h(s,—) # 1 in general. We cannot ensure that

h € C(L) because of (r2).

‘ C(L) fails to be Dedekind complete because of (r2)! ‘




The frame of partial reals £(IR)

Generators: (p,q), pP,g€eQ

Generators:

(r,—), (_7 S)v

r,seqQ

Relations:

(R1) (p,q) A (r,s) =(pVr,gAs),

(R2) (p,q) V (r,s) = (p,s) whenever
pP<r<q<s;

(R3) (p,q) = V{(r,s)[p<r<s<aq},

(R4) V, 4eo(P,q) =1.

Relations:
(r1) (r,—) A (—, s) = 0 whenever r > s,
(r2) (r,—) VvV (—,s) =1 whenever r <'s,
(r3) (rv_) = v5>r(55_) and

(_7 S) = r<s(_7 r)'
() Vg, =) = 1=V o= 9)-

They both generate the same frame, the frame of partial reals £(R). Question. Do

they generate the same frame?

Answer. Yes, they do.

We will call it the frame of partial reals and denote by £(IR).




The frame of partial reals £(IR)

Generators: (p,q), pP,g€eQ Generators:  (r,—),(—,s), r,s€Q

Relations: Relations:

(R1) (p,g) A (r,s)=(pVr,gNs), (r1) (r,—) A (—, s) = 0 whenever r > s,

(R2) (p,q) Vv (r,s) = (p.s) whenever (r2) (r,—) VvV (—,s) =1 whenever r <'s,
pP<r<q<s; (r3) (r,—) = V,-,(s,—) and

(R3) (pa q) = V{(rv S) | p<r<s< q}v (_7 5) = Vr<s(_7 r)'

(R4) Vp,qgQ(pa q) =1 (r4) vreQ(r7_) =1= VSEQ(_7 s)-

The spectrum L £(IR) is the partial real line!

. [p,p] [r,r] [g,4q] [s,s] . IR={a:=[a,3 CR|a,a€Rand a<73}

aCb iff [a,3] 2 [bb]
a

I q].[r g (IR, C) is the partial real line (or interval-domain)

The Scott topology on (IR, C) is isomorphic to £(IR)
(p.q)={acIR|[p,q] < a}



The frame of extended partial reals £(IR)

Generators: (p,q), pP,qeQ

Generators:

(r,—), (_7 S)v

r,seqQ

Relations:

(R1) (p,q) A (r,s)=(pV r,gAs),

(R2) (p,q) V (r.s) = (p,s) whenever
p=t<q=s;

(R3) (p,q) = V{(r,s) | p<r<s<gq},

RV gealpra) =1

Relations:
(r1) (r,—) A (—,s) = 0 whenever r > s,
(r2) (r,—) VvV (—,s) =1 whenever r <'s,
(r3) (rv_) = Vs>r(5,—) and

(_7 5) = Vr<s(_7 r)'
(H-Vieglr—) =1 ="Veol—5)

The spectrum £(IR) is the extended partial real line.

IR ={a:=[2,3] CR|a3€cRand a<3}

al b

iff  [a,3] D [b, b]

The Scott topology on (IR, C) is isomorphic to £(IR)




The frame of partial reals and partial continuous real functions

The frame of partial reals is the frame £(R)£(IR) generated by generators (r,—) and
(—, s) for r,s € Q subject to the defining relations

(r1) (r,—) A (—,s) = 0 whenever r > s,

(r2) (r,—)V (—,s) =1 whenever r <s,

(r3) (r,—=) =V,s,(s,—)and (—,r) =V, (=, 5), for every r € Q,
(r4) \/,e@(ﬂ—) =1= VrEQ(_7 r).

The spectrum of £(IR) is homeomorphic to the space IR of partial reals endowed with
the Scott topology.

Combining the natural isomorphism Top(X, XL) ~ Frm(L, OX) for L = £(IR) with the
homeomorphism X £(IR) ~ IR one obtains

IC(X) = Top(X,IR) = Frm(£(IR), OX)

Regarding the frame homomorphisms £(IR) — L, for a general frame L, as the partial
continuous real functions on L provides a natural extension of the classical notion.
Hence we denote

‘IC(L) = Frm(£(IR), L) ‘




Dedekind completeness of IC(L)

Let {fi}ic) C IC(L) and f € IC(L) be such that f; < f for all i € I.
Does there exist \/,, fi in IC(L)?

Here again, the natural candidate would be defined for each r € Q by

h(r.—=) =V fi(r—) and  h(—r)= V (A fi(—5)).

Recall that
(r1) if r <'s, then h(—,r) A h(s,—) =0, %
helC(L) <= § (8) f(rn—) = V.., f(s.—) and f(—. 1) =V, F(—s), V
(r4) Vo f(r=) =1=V,eo f(—=1)

o) p.

iel I

Hence h € IC(L). Moreover, h =/

Theorem. IC(L) is Dedekind complete.



Dedekind completion of C(L)

Recall that we can consider C(L) as a subset of IC(L).
IC(L)

C(L)* ={heIC(L)| 7?7}

C(L)y={helIC(L)]

h(—,r)V h(s,—) =1
for each s < r}

Now, since IC(L) is Dedekind complete it follows that it contains the Dedekind
completion of all its subsets, in particular C(L).



Dedekind completion of C(L) and C(L)

There is no essential loss of generality if we restrict ourselves to completely regular
frames, so L will denote a completely regular frame in what follows.

)

Recall that if £ € C(L) then

IN

o , {f(sv_)
(r2) f(—r)Vvf(s,—)=1 Vs<r = (r2) f

If L extremally disconnected then (r2) <= (r2)".

Theorem. Let L be a frame. Then the Dedekind completion C(L)*of C(L)is given by

C(L)" ={helC(L)| (1) If,gecC(L):fF<h<g
(2) h(s,—)" < h(—,r)and h(—,r)" < h(s,—) if s <r}

Corollary. C(L) is Dedekind complete if and only if L is extremally disconnected.



Dedekind completion of C*(L), C(L,Z), ...

Let
C*(L) ={h € C(L)| there exists r € Q such that h(—r,r) =1}

IC™(L) = {h € IC(L)| there exists r € Q such that h(—r,r) = 1}.
Corollary. Let L be a completely regular frame. Let L be a frame. Then the Dedekind
completion C*(L)# of C*(L) is given by
c* (L) = c(L)* n1C*(L).

Corollary. C*(L) is Dedekind complete if and only if L is extremally disconnected.

The integer-valued case follows similarly:

An h € IC(L) is said to be integer-valued if f(r,s) = f (|r],[s]) for all r,s € Q, (where
|r] denotes the biggest integer < r and [s] the smallest integer > s).

Let
3L~ C(L,Z)=C(L)yn{h € IC(L) | h is integer-valued}.

Corollary. For any zero-dimensional frame L, C(L,Z)* = C(L)* N1C(L,Z) is the
Dedekind completion of C(L, Z).

Corollary. For any zero-dimensional frame L, C(L,Z) is Dedekind complete if and only
if L is extremally disconnected.



Summary

Generators:  (r,—),(—,s), r,s€Q Generators:  (r,—),(—,s), r,s€Q
Relations: Relations:

(r1) (r,—) A (—, s) = 0 whenever r > s, (r1) (r,—) A (—, s) = 0 whenever r > s,
(r2) (r,—) V (—,s) = 1 whenever r < s, (r2) (r,—)V(—,s) =1 whenever r < s,
(r3) (r _) = \/s>r($’_) and (r3) (r7_) = Vs>,(57—) and

(_7 S) = Vr<s(_7 I’), (_7 5) = Vr<s(_7 r)'
(r4) VrGQ(r7_) =l= VseQ(_v s): (r4) VyeQ(r7_) =1= VSEQ(_7 s)-

The frame of extended reals £(R).

Extended continuous real functions:

C(L) = Frm(£(R), L)

The frame of partial reals £(IR).

Partial continuous real functions:

‘IC(L) = Frm(£(IR), L) ‘




