On extended and partial real-valued functions in Pointfree Topology

Javier Gutiérrez García¹

University of the Basque Country, UPV/EHU

Orange, August 8, 2013

¹Joint work with Jorge Picado

The ring of continuous real functions on a frame: C(L)

The frame of reals is the frame $\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p,q), where $p,q\in\mathbb{Q}$, subject to the following relations:

(R1)
$$(p,q) \wedge (r,s) = (p \vee r, q \wedge s),$$

(R2)
$$(p,q) \lor (r,s) = (p,s)$$
 whenever $p \le r < q \le s$,

(R3)
$$(p,q) = \bigvee \{(r,s) \mid p < r < s < q\},$$

(R4)
$$\bigvee_{p,q\in\mathbb{Q}}(p,q)=1.$$

The spectrum of $\mathfrak{L}(\mathbb{R})$ is homeomorphic to the space \mathbb{R} of reals endowed with the euclidean topology.

Combining the natural isomorphism $\mathsf{Top}(X,\Sigma L)\simeq\mathsf{Frm}(L,\mathcal{O}X)$ for $L=\mathfrak{L}(\mathbb{R})$ with the homeomorphism $\Sigma\mathfrak{L}(\mathbb{R})\simeq\mathbb{R}$ one obtains

$$\mathsf{C}(X) = \mathsf{Top}(X,\mathbb{R}) \stackrel{\sim}{\longrightarrow} \mathsf{Frm}(\mathfrak{L}(\mathbb{R}),\mathcal{O}X)$$

Regarding the frame homomorphisms $\mathfrak{L}(\mathbb{R}) \to L$, for a general frame L, as the continuous real functions on L provides a natural extension of the classical notion. They form a lattice-ordered ring that we denote

$$\mathsf{C}(\mathit{L}) = \mathsf{Frm}(\mathfrak{L}(\mathbb{R}), \mathit{L})$$

Lattice and algebraic operations in C(L)

Recall that the operations on the algebra C(L) are determined by the lattice-ordered ring operations of \mathbb{Q} as follows:

(1) For
$$\diamond = +, \cdot, \wedge, \vee$$
:
$$(f \diamond g)(p, q) = \bigvee \{ f(r, s) \land g(t, u) \mid \langle r, s \rangle \diamond \langle t, u \rangle \subseteq \langle p, q \rangle \}$$

where $\langle \cdot, \cdot \rangle$ stands for open interval in $\mathbb Q$ and the inclusion on the right means that $x \diamond y \in \langle p, q \rangle$ whenever $x \in \langle r, s \rangle$ and $y \in \langle t, u \rangle$.

- (2) (-f)(p,q) = f(-q,-p).
- (3) For each $r \in \mathbb{Q}$, a nullary operation \mathbf{r} defined by

$$\mathbf{r}(p,q) = \begin{cases} 1 & \text{if } p < r < q \\ 0 & \text{otherwise.} \end{cases}$$

(4) For each $0 < \lambda \in \mathbb{Q}$, $(\lambda \cdot f)(p,q) = f(\frac{p}{\lambda}, \frac{q}{\lambda})$.

The real numbers in pointfree topology,

Textos de Matemática, Série B, 12, Univ. de Coimbra, 1997.

Part I: Extended real-valued functions

(based on joint work with Bernhard Banaschewski,)

The frame of extended reals: a first attempt

How to describe the frame $\mathfrak{L}(\mathbb{R})$ of extended reals in terms of generators and relations?

The frame of extended reals is the frame $\mathfrak{L}(\mathbb{R})\mathfrak{L}(\mathbb{R})$ generated by all ordered pairs (p,q), where $p,q\in\mathbb{Q}$, subject to the following relations:

(R1)
$$(p,q) \land (r,s) = (p \lor r, q \land s)$$
,
(R2) $(p,q) \lor (r,s) = (p,s)$ whenever $p \le r < q \le s$,
(R3) $(p,q) = \bigvee \{(r,s) \mid p < r < s < q\}$,
(R4) $\bigvee_{p,q \in \mathbb{Q}} (p,q) = 1$.

But this frame is precisely the one-point extension of $\mathfrak{L}(\mathbb{R})!$

The spectrum of $\mathfrak{L}(\mathbb{R})$ is <u>not</u> homeomorphic to the space \mathbb{R} of extended reals endowed with the euclidean topology. Indeed,

$$X = \mathbb{R} \cup \{\infty\}$$

$$P \qquad q$$

The one-point extension of the real line: $\mathcal{O}X = \mathcal{O}\mathbb{R} \cup \{X\}$

The frame of extended reals

It is useful here to adopt an equivalent description of $\mathfrak{L}(\mathbb{R})$ with the elements

$$(r,-) = \bigvee_{s \in \mathbb{Q}} (r,s)$$
 and $(-,s) = \bigvee_{r \in \mathbb{Q}} (r,s)$

as primitive notions.

Specifically, the frame of reals $\mathfrak{L}(\mathbb{R})$ is equivalently given by generators (r, -) and (-, s) for $r, s \in \mathbb{Q}$ subject to the defining relations

(r1)
$$(r, -) \land (-, s) = 0$$
 whenever $r \ge s$,

(r2)
$$(r, -) \lor (-, s) = 1$$
 whenever $r < s$,

(r3)
$$(r,-) = \bigvee_{s > r} (s,-)$$
, and $(-,r) = \bigvee_{s < r} (-,s)$, for every $r \in \mathbb{Q}$,

(r4)
$$\bigvee_{r\in\mathbb{O}}(r,-)=1=\bigvee_{r\in\mathbb{O}}(-,r).$$

With
$$(p,q) = (p,-) \land (-,q)$$
 one goes back to $(R1)$ - $(R4)$.

The frame of extended reals and extended continuous real functions

The frame of extended reals is the frame $\mathfrak{L}(\mathbb{R})\mathfrak{L}(\mathbb{R})$ generated by generators (r,-) and (-,s) for $r,s\in\mathbb{Q}$ subject to the defining relations

(r1)
$$(r, -) \land (-, s) = 0$$
 whenever $r \ge s$,

(r2)
$$(r, -) \lor (-, s) = 1$$
 whenever $r < s$,

(r3)
$$(r,-) = \bigvee_{s>r}(s,-)$$
 and $(-,r) = \bigvee_{s< r}(-,s)$, for every $r \in \mathbb{Q}$,

(r4)
$$\bigvee_{r\in\mathbb{O}}(r,-)=1=\bigvee_{r\in\mathbb{O}}(-,r).$$

The spectrum of $\mathfrak{L}(\mathbb{R})$ is homeomorphic to the space \mathbb{R} of extended reals endowed with the euclidean topology.

Combining the natural isomorphism $\mathbf{Top}(X, \Sigma L) \simeq \mathbf{Frm}(L, \mathcal{O}X)$ for $L = \mathfrak{L}(\mathbb{R})$ with the homeomorphism $\Sigma \mathfrak{L}(\mathbb{R}) \simeq \mathbb{R}$ one obtains

$$\overline{\mathsf{C}}(X) = \mathsf{Top}(X,\overline{\mathbb{R}}) \stackrel{\sim}{\longrightarrow} \mathsf{Frm}(\mathfrak{L}(\overline{\mathbb{R}}),\mathcal{O}X)$$

Regarding the frame homomorphisms $\mathfrak{L}(\mathbb{R}) \to L$, for a general frame L, as the extended continuous real functions on L provides a natural extension of the classical notion. Hence we denote

$$\overline{\mathsf{C}}(\mathit{L}) = \mathbf{Frm}(\mathfrak{L}\big(\overline{\mathbb{R}}\big), \mathit{L})$$

Lattice and algebraic operations in C(L) (equivalent characterization)

Recall that the operations on the algebra C(L) are determined by the lattice-ordered ring operations of \mathbb{Q} as follows:

(1) For $\diamond = +, \cdot, \wedge, \vee$:

$$(f \diamond g)(p, -) = \bigvee_{p < r \diamond s} f(r, -) \wedge g(s, -) \quad \text{and} \quad (f \diamond g)(-, q) = \bigvee_{r \diamond s < q} f(-, r) \wedge g(-, s)$$

- (2) (-f)(p,-) = f(-,-p) and (-f)(-,q) = f(-q,-).
- (3) For each $r \in \mathbb{Q}$, a nullary operation \mathbf{r} defined by

$$\mathbf{r}(p,-) = egin{cases} 1 & ext{if } p < r \\ 0 & ext{otherwise} \end{cases}$$
 and $\mathbf{r}(-,q) = egin{cases} 1 & ext{if } r < q \\ 0 & ext{otherwise}. \end{cases}$

(4) For each $0 < \lambda \in \mathbb{Q}$, $(\lambda \cdot f)(p, -) = f(\frac{p}{\lambda}, -)$ and $(\lambda \cdot f)(-, q) = f(-, \frac{q}{\lambda})$.

The real numbers in pointfree topology,

Textos de Matemática, Série B, 12, Univ. de Coimbra, 1997.

Lattice operations in $\overline{\mathbb{C}}(L)$

An analysis of the proof that C(L) is an f-ring shows that, by the same arguments, the operations \vee , \wedge and $-(\cdot)$ satisfy all identities which hold for the corresponding operations of $\mathbb Q$ in $\overline{C}(L)$.

Hence, $\overline{C}(L)$ is a distributive lattice with join \vee , meet \wedge and an inversion given by $-(\cdot)$. Moreover, it is, of course, bounded, with top $+\infty$ and bottom $-\infty$, where

$$+\infty(p,-) = 1 = -\infty(-,q)$$
 and $+\infty(-,q) = 0 = -\infty(p,-)$.

Further, the partial order determined by this lattice structure is exactly the one mentioned earlier:

$$f \leq g$$
 iff $f \vee g = g$ iff $f \wedge g = f$ iff $f(r, -) \leq g(r, -)$ for all $r \in \mathbb{Q}$ iff $f(-, s) \geq g(r, -, s)$ for all $s \in \mathbb{Q}$.

Things become more complicated in the case of addition and multiplication.

This is not a surprise if we think of the typical indeterminacies

$$-\infty + \infty$$
 and $0 \cdot \infty$

when dealing with the algebraic operations in $\overline{C}(X)$

In the classical case, given $f, g: X \to \overline{\mathbb{R}}$, the condition

$$f^{-1}(\{+\infty\}) \cap g^{-1}(\{-\infty\}) = \emptyset = f^{-1}(\{-\infty\}) \cap g^{-1}(\{+\infty\})$$

ensures that the addition f+g can be defined for all $x\in X$ just by the natural convention

$$\lambda + (+\infty) = +\infty = (+\infty) + \lambda$$
 and $\lambda + (-\infty) = -\infty = (-\infty) + \lambda$

for all $\lambda \in \mathbb{R}$ together with the usual $(+\infty) + (+\infty) = +\infty$ and the same for $-\infty$.

Clearly enough, this condition is equivalent to

$$(f\vee g)^{-1}(\{+\infty\})\cap (f\wedge g)^{-1}(\{-\infty\})=\varnothing.$$

What about the algebraic operations in $\overline{C}(L)$?: Addition

Let $f, g \in \overline{\mathbb{C}}(L)$, the natural definition of $h = f + g : \mathfrak{L}(\mathbb{R}) \to L$ on generators would be:

$$h(p, -) = \bigvee_{p < r + s} f(r, -) \wedge g(s, -) \quad \text{and} \quad h(-, q) = \bigvee_{r + s < q} f(-, r) \wedge g(-, s)$$

But $h \notin \overline{C}(L)$ in general! Indeed, $h \in \overline{C}(L)$ if and only if

$$\left(\bigvee_{r\in\mathbb{Q}}f(-,r)\vee\bigvee_{r\in\mathbb{Q}}g(r,-)\right)\wedge\left(\bigvee_{r\in\mathbb{Q}}g(-,r)\vee\bigvee_{r\in\mathbb{Q}}f(r,-)\right)=1.$$

Notation. For each $f \in \overline{C}(L)$ let

$$a_f^+ = \bigvee_{r \in \mathbb{Q}} f(-,r), \quad a_f^- = \bigvee_{r \in \mathbb{Q}} f(r,-) \quad \text{and} \quad a_f = a_f^+ \wedge a_f^- = \bigvee_{r < s} f(r,s) = f(\omega).$$

 a_f is the pointfree counterpart of the domain of reality $f^{-1}(\mathbb{R})$ of an $f: X \to \overline{\mathbb{R}}$.

Note also that $a_f = a_f^+ = a_f^- = 1$ if and only if $f \in C(L)$.

Definition. Let $f, g \in \overline{\mathbb{C}}(L)$. We say that f and g are sum compatible if

$$a_{f \vee g}^+ \lor a_{f \wedge g}^- = 1 \quad \text{iff} \quad \left(a_f^+ \lor a_g^-\right) \land \left(a_g^+ \lor a_f^-\right) = 1.$$

Theorem. Let $f,g\in \overline{\mathbb{C}}(L)$ and $fh=+g\colon \mathfrak{L}(\overline{\mathbb{R}})\to L$ given by

$$(f+g)(p,-)=\bigvee_{p< r+s}f(r,-)\wedge g(s,-)\quad \text{and}\quad (f+g)(-,q)=\bigvee_{r+s< q}f(-,r)\wedge g(-,s).$$

Then $f + g \in \overline{C}(L)$ if and only if f and g are sum compatible.

What about the algebraic operations in $\overline{\mathbb{C}}(L)$?: Multiplication

In the classical case, given $f, g: X \to \overline{\mathbb{R}}$ the condition

$$f^{-1}(\{-\infty, +\infty\}) \cap g^{-1}(\{0\}) = \emptyset = f^{-1}(\{0\}) \cap g^{-1}(\{-\infty, +\infty\})$$

ensures that the multiplication $f\cdot g$ can be defined for all $x\in X$ just by the natural conventions

$$\lambda \cdot (\pm \infty) = \pm \infty = (\pm \infty) \cdot \lambda$$

for all $\lambda > 0$ and

$$\lambda \cdot (\pm \infty) = \mp \infty = (\pm \infty) \cdot \lambda$$

for all $\lambda < 0$ together with the usual

$$(\pm \infty) \cdot (\pm \infty) = +\infty$$
 and $(\pm \infty) \cdot (\mp \infty) = -\infty$.

Notation. Recall that in a frame L, a cozero element is an element of the form

$$\cos f = f((-,0) \lor (0,-)) = \bigvee \{ f(p,0) \lor f(0,q) \mid p < 0 < q \text{ in } \mathbb{Q} \}$$

for some $f \in C(L)$. This is the pointfree counterpart to the notion of a cozero set for ordinary continuous real functions.

Algebraic operations in $\overline{\mathbb{C}}(L)$

Definition. Let $f,g \in \overline{C}(L)$. We say that f and g are product compatible if

$$\left(a_f \wedge a_g\right) \vee \left(\cos f \wedge \cos g\right) = 1 \quad \text{iff} \quad \left(a_f \vee \cos g\right) \wedge \left(a_g \vee \cos f\right) = 1.$$

Theorem. Let $f,g \in \overline{\mathbb{C}}(L)$ and $f \cdot g \colon \mathfrak{L}(\overline{\mathbb{R}}) \to L$ given by

$$(f \cdot g)(p, -) = \bigvee_{p < r \cdot s} f(r, -) \wedge g(s, -) \quad \text{and} \quad (f \cdot g)(-, q) = \bigvee_{r \cdot s < q} f(-, r) \wedge g(-, s).$$

Then $f \cdot g \in \overline{C}(L)$ if and only if f and g are product compatible.

Representation Theorem (Johnson, 1962)

Let A be an archimedean f-ring with $N(A) = \{0\}$. Then there is a locally compact Hausdorff space X and an f-ring \hat{A} of almost finite extended real functionsalmost finite extended real functions on X which separates points and closed setswhich separates points and closed sets in X, and an isomorphism $A \to \hat{A}$.

D.J. Johnson.

On a Representation Theory for a Class of Archimedean Lattice-Ordered Rings, Proc. London Math. Soc, 12 (1962), 207-225.

Question: Is it possible to deal with families of "almost finite extended real functions which separates points and closed sets" in a pointfree setting?

Answer: Yes, we can! !Podemos!

Almost finite extended functions.

Recall that we have $C(L) = \{ f \in \overline{C}(L) \mid a_f = 1 \}$. Now, for any frame L, let

$$\mathsf{D}(L) = \big\{ f \in \overline{\mathsf{C}}(L) \mid \mathsf{a}_f \text{ is dense} \big\}$$

This definition extends the familiar classical notion to the pointfree setting:

Given an extended real continuous function $u\colon X\to \overline{\mathbb{R}}$ we have that the corresponding frame homomorphisms $\mathcal{O}u=u^{-1}\in \overline{\mathsf{C}}(\mathcal{O}X)$ and

$$\mathcal{O}u \in \mathsf{D}(\mathcal{O}X)$$
 iff $u^{-1}[\mathbb{R}]$ is dense in X iff $u \in \mathsf{D}(X)$.

The correspondence $L\mapsto D(L)$ is functorial for skeletal homomorphisms, that is, the $h\colon L\to M$ which take dense elements to dense elements

Theorem. For any L, there exists an inversion lattice embedding $\delta_L : D(L) \to C(\mathfrak{B}L)$ such that

$$\delta_L(f)(r,-) = f(r,-)^{**}$$
 and $\delta_L(f)(-,r) = f(-,r)^{**}$

which preserves the partial addition and multiplication of D(L).

Moreover, δ_L is onto if and only if L is extremally disconnected and then the partial operations are total so that δ_L is a lattice-ordered ring isomorphism.

B. Banaschewski, JGG and JP

Extended real functions in Pointfree Topology,

Journal of Pure and Applied Algebra 216 (2012), no. 4, 905-922.

Subfamilies in $\overline{C}(X)$ which separates points from closed sets in X.

In Top – the category of all topological spaces – let:

$$f: X \to Y_f$$
 for all $f \in \mathcal{F}$.

The family \mathcal{F} separates points from closed sets if for each closed $K \subseteq X$ and $x \in X \setminus K$, there exists an $f \in \mathcal{F}$ with $f(x) \notin \overline{f(K)}$.

Avoiding points. The family $\mathcal F$ separates points from closed sets iff for each closed $\mathcal K\subset \mathcal X$

$$K = \bigcap_{f \in \mathcal{F}} f^{-1}(\overline{f(K)}).$$

Avoiding closed sets. The family $\mathcal F$ separates points from closed sets iff for each closed $U\in\mathcal OX$

$$U = \bigcup_{f \in \mathcal{F}} f^{-1}(Y_f \setminus \overline{f(X \setminus U)}) = \bigcup_{f \in \mathcal{F}} f^{-1}(f_*(U))$$

(where $f_*: \mathcal{O}X \to \mathcal{O}Y_f$ is the right adjoint of the inverse image map $f^{-1}: \mathcal{O}Y_f \to \mathcal{O}X$).

Separating subfamilies in $\overline{C}(L)$.

In Frm let:

$$h: M_h \to L$$
 for all $h \in \mathcal{H}$.

Definition. The family \mathcal{H} is said to be separating if

$$a = \bigvee_{h \in \mathcal{H}} h(h_*(a))$$
 for all $a \in L$.

(Note that if $\mathcal{H} = \{h\}$ then \mathcal{H} is separating iff h is an embedding.)

This definition extends a familiar classical notion to the pointfree setting:

Let $u\colon X\to Y_u$ be in Top for all $u\in\mathcal{F}$, and let \mathcal{OF} be the corresponding family of frame homomorphisms $\mathcal{O}u=u^{-1}\colon \mathcal{O}Y_u\to\mathcal{O}X$.

Then

 \mathcal{F} separates points from closed sets in Top iff \mathcal{OF} is separating in Frm.

Part II: Partial real-valued functions

(based on joint work with Imanol Mozo Carollo)

Order completeness of C(L) and $\overline{C}(L)$

Certainly both C(L) and $\overline{C}(L)$ fail to be Dedekind complete. But...why?

Let $\{f_i\}_{i\in I}\subset \mathrm{C}(L)$ and $f\in \mathrm{C}(L)$ be such that $f_i\leq f$ for all $i\in I$.

The natural candidate $h \colon \mathfrak{L}(\mathbb{R}) \to L$ would be defined for each $r \in \mathbb{Q}$ by

$$h(r,-) = \bigvee_{i \in I} f_i(r,-)$$
 and $h(-,r) = \bigvee_{s < r} \left(\bigwedge_{i \in I} f_i(-,s) \right)$.

Recall that

$$h \in C(L) \iff \begin{cases} (r1) \text{ if } r \leq s, \text{ then } h(-,r) \land h(s,-) = 0, \\ (r2) \text{ if } s < r, \text{ then } h(-,r) \lor h(s,-) = 1, \\ (r3) h(r,-) = \bigvee_{s>r} h(s,-) \text{ and } h(-,r) = \bigvee_{s$$

(r2) if s < r, then $h(-,r) \lor h(s,-) \ne 1$ in general. We cannot ensure that $h \in C(L)$ because of (r2).

C(L) fails to be Dedekind complete because of (r2)!

The frame of partial reals $\mathfrak{L}(\mathbb{IR})$

They both generate the same frame, the frame of partial reals $\mathfrak{L}(\mathbb{R})$. Question. Do they generate the same frame?

Answer. Yes, they do.

We will call it the frame of partial reals and denote by $\mathfrak{L}(\mathbb{IR})$.

The frame of partial reals $\mathfrak{L}(\mathbb{IR})$

The spectrum $\Sigma \mathfrak{L}(\mathbb{IR})$ is the partial real line!

$$[p, p] [r, r] [q, q] [s, s]$$

$$[p, q] [r, s]$$

$$\mathbb{IR} = \{ a := [\underline{a}, \overline{a}] \subset \mathbb{R} \mid \underline{a}, \overline{a} \in \mathbb{R} \text{ and } \underline{a} \leq \overline{a} \}$$
$$a \sqsubseteq b \quad \text{iff} \quad [\underline{a}, \overline{a}] \supseteq [\underline{b}, \overline{b}]$$

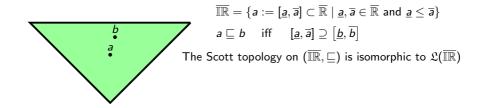
 $(\mathbb{IR},\sqsubseteq)$ is the partial real line (or interval-domain)

The Scott topology on $(\mathbb{IR}, \sqsubseteq)$ is isomorphic to $\mathfrak{L}(\mathbb{IR})$

$$(p,q) \equiv \{a \in \mathbb{IR} \mid [p,q] \ll a\}$$

The frame of extended partial reals $\mathfrak{L}(\overline{\mathbb{IR}})$

The spectrum $\Sigma \mathfrak{L}(\overline{\mathbb{IR}})$ is the extended partial real line.



The frame of partial reals and partial continuous real functions

The frame of partial reals is the frame $\mathfrak{L}(\mathbb{R})\mathfrak{L}(\mathbb{R})$ generated by generators (r, -) and (-, s) for $r, s \in \mathbb{Q}$ subject to the defining relations

(r1)
$$(r, -) \land (-, s) = 0$$
 whenever $r \ge s$,

(r2)
$$(r, -) \lor (-, s) = 1$$
 whenever $r < s$,

(r3)
$$(r,-) = \bigvee_{s>r} (s,-)$$
 and $(-,r) = \bigvee_{s, for every $r \in \mathbb{Q}$,$

(r4)
$$\bigvee_{r\in\mathbb{Q}}(r,-)=1=\bigvee_{r\in\mathbb{Q}}(-,r).$$

The spectrum of $\mathfrak{L}(\mathbb{R})$ is homeomorphic to the space \mathbb{R} of partial reals endowed with the Scott topology.

Combining the natural isomorphism $\mathsf{Top}(X,\Sigma L) \simeq \mathsf{Frm}(L,\mathcal{O}X)$ for $L = \mathfrak{L}(\mathbb{IR})$ with the homeomorphism $\Sigma\mathfrak{L}(\mathbb{IR}) \simeq \mathbb{IR}$ one obtains

$$\mathsf{IC}(X) = \mathsf{Top}(X,\mathbb{R}) \stackrel{\sim}{\longrightarrow} \mathsf{Frm}(\mathfrak{L}(\mathbb{R}),\mathcal{O}X)$$

Regarding the frame homomorphisms $\mathfrak{L}(\mathbb{IR}) \to L$, for a general frame L, as the partial continuous real functions on L provides a natural extension of the classical notion. Hence we denote

$$IC(L) = Frm(\mathfrak{L}(\mathbb{IR}), L)$$

Dedekind completeness of IC(L)

Let $\{f_i\}_{i\in I}\subset \mathrm{IC}(L)$ and $f\in \mathrm{IC}(L)$ be such that $f_i\leq f$ for all $i\in I$. Does there exist $\bigvee_{i\in I}f_i$ in $\mathrm{IC}(L)$?

Here again, the natural candidate would be defined for each $r \in \mathbb{Q}$ by

$$h(r,-) = \bigvee_{i \in I} f_i(r,-)$$
 and $h(-,r) = \bigvee_{s < r} \left(\bigwedge_{i \in I} f_i(-,s) \right)$.

Recall that

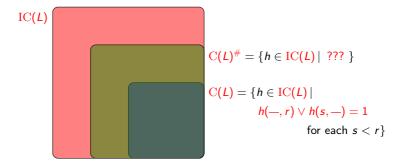
$$h \in IC(L) \iff \begin{cases} (r1) \text{ if } r \leq s, \text{ then } h(-,r) \wedge h(s,-) = 0, \\ (r3) f(r,-) = \bigvee_{s>r} f(s,-) \text{ and } f(-,r) = \bigvee_{s$$

Hence $h \in IC(L)$. Moreover, $h = \bigvee_{i \in I}^{IC(L)} h_i$.

Theorem. IC(L) is Dedekind complete.

Dedekind completion of C(L)

Recall that we can consider C(L) as a subset of IC(L).



Now, since IC(L) is Dedekind complete it follows that it contains the Dedekind completion of all its subsets, in particular C(L).

Dedekind completion of C(L) and $\overline{C}(L)$

There is no essential loss of generality if we restrict ourselves to *completely regular* frames, so *L* will denote a completely regular frame in what follows.

Recall that if $f \in C(L)$ then

If L extremally disconnected then $(r2) \iff (r2)'$.

Theorem. Let L be a frame. Then the Dedekind completion $C(L)^{\#}$ of C(L) is given by

$$C(L)^{\#} = \{ h \in IC(L) \mid (1) \; \exists f, g \in C(L) : f \le h \le g$$

$$(2) \; h(s,-)^{*} \le h(-,r) \text{ and } h(-,r)^{*} \le h(s,-) \text{ if } s < r \}$$

Corollary. C(L) is Dedekind complete if and only if L is extremally disconnected.

Dedekind completion of $C^*(L)$, $C(L, \mathbb{Z})$, . . .

Let

$$\mathrm{C}^*(L) = \{ h \in \mathrm{C}(L) \mid \text{ there exists } r \in \mathbb{Q} \text{ such that } h(-r,r) = 1 \}$$

 $\mathrm{IC}^*(L) = \{ h \in \mathrm{IC}(L) \mid \text{ there exists } r \in \mathbb{Q} \text{ such that } h(-r,r) = 1 \}.$

Corollary. Let L be a completely regular frame. Let L be a frame. Then the Dedekind completion $C^*(L)^\#$ of $C^*(L)$ is given by

$$C^*(L)^\# = C(L)^\# \cap IC^*(L).$$

Corollary. $C^*(L)$ is Dedekind complete if and only if L is extremally disconnected.

The integer-valued case follows similarly:

An $h \in IC(L)$ is said to be integer-valued if $f(r,s) = f(\lfloor r \rfloor, \lceil s \rceil)$ for all $r, s \in \mathbb{Q}$, (where $\lfloor r \rfloor$ denotes the biggest integer $\leq r$ and $\lceil s \rceil$ the smallest integer $\geq s$).

Let

$$\mathfrak{Z}L\simeq \mathrm{C}(L,\mathbb{Z})=\mathrm{C}(L)\cap\{h\in\mathrm{IC}(L)\,|\,h\text{ is integer-valued}\}.$$

Corollary. For any zero-dimensional frame L, $C(L, \mathbb{Z})^{\#} = C(L)^{\#} \cap IC(L, \mathbb{Z})$ is the Dedekind completion of $C(L, \mathbb{Z})$.

Corollary. For any zero-dimensional frame L, $C(L,\mathbb{Z})$ is Dedekind complete if and only if L is extremally disconnected.

Summary

Generators: $(r,-),(-,s), r,s \in \mathbb{Q}$ Relations:

(r1)
$$(r, -) \land (-, s) = 0$$
 whenever $r \ge s$, (r2) $(r, -) \lor (-, s) = 1$ whenever $r < s$,

(r2)
$$(r, -) \lor (-, s) = 1$$
 whenever $r < s$,
(r3) $(r, -) = \bigvee_{s > r} (s, -)$ and

$$(-,s) = \bigvee_{r < s} (-,r),$$

$$(r4)$$
 $\bigvee_{r\in\mathbb{Q}}(r,-)=1=\bigvee_{s\in\mathbb{Q}}(-,s).$

Generators: $(r,-),(-,s), r,s \in \mathbb{Q}$

Relations:

$$|\cdot| (r1) (r,-) \wedge (-,s) = 0$$
 whenever $r \geq s$,

$$(r2)(r,-)\vee(-,s)=1$$
 whenever $r < s$,

(r3)
$$(r,-) = \bigvee_{s>r} (s,-)$$
 and $(-,s) = \bigvee_{r < s} (-,r),$

(r4)
$$\bigvee_{r \in \mathbb{Q}} (r, -) = 1 = \bigvee_{s \in \mathbb{Q}} (-, s).$$

The frame of extended reals $\mathfrak{L}(\overline{\mathbb{R}})$.

Extended continuous real functions:

$$\overline{\mathrm{C}}(L) = \mathsf{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), L)$$

The frame of partial reals $\mathfrak{L}(\mathbb{IR})$.

Partial continuous real functions:

$$IC(L) = Frm(\mathfrak{L}(\mathbb{IR}), L)$$