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Consider the interplay of sequences and certain countability,
closure and compactness properties in topology.

I Convergence (sequences, filters) characterising notions of
closure and closedness.

I X is countably compact ⇔ every sequence in X clusters.

I X sequentially compact ⇒ X is countably compact.

I A sequentially closed subspace of a sequentially compact
space is sequentially compact.

I The product of a sequentially compact and a countably
compact space is countably compact.

Naive, emboldened by recent results on pseudocompactness.
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A sequence in a space X is a continuous map f : N→ X . So, as
first attempt...

Definition
A sequence in a frame L is a homomorphism s : L→ P(N).
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Thus s is a sequence of points. This will surely be inadequate,
none the less the natural definitions and initial results build some
intuition.
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Definition
A sequence s converges in L if for any cover C of L there exists
a ∈ C and n ∈ N such that m ≥ n⇒ sm(a) 6= 0.

(The filter base of tails of the sequence is convergent; s is
eventually non-zero on a.)

Proposition

If a sequence s converges in L then it has a ”limit” t : L→ 2 given
by t(a) = 1⇔ ∃n ∈ N ∀m ≥ n, sm(a) 6= 0.

One can proceed with natural definitions of subsequence,
clustering, sequential closure, sequential compactness and establish
initial results relating these concepts. Inevitably, however, the
notion is inadequate.
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Definition
A (generalised) sequence on a frame L is a collection of frame
homomorphisms sn : L→ Tn indexed by N.

Definition

1. A sequence (sn) on L is convergent if for any cover C of L
there exists a ∈ C and n ∈ N such that m ≥ n⇒ sm(a) 6= 0.

2. A sequence (sn) on L clusters if for any cover C of L there
exists a ∈ C such that for all n ∈ N there exists m ≥ n with
sm(a) 6= 0.

Proposition

If a sequence (sn) has a convergent subsequence then (sn) clusters.
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Definition

1. A sublocale L
h
� M is sequentially closed if for any sequence

(sn) on M, if (snh) is convergent then so is (sn).

2. A frame L is sequentially compact if any sequence on L has a
convergent subsequence.

Proposition

1. If L is sequentially compact and h : K → L injective, then K is
sequentially compact.

2. If L is sequentially compact and L
h
� M a sequentially closed

sublocale, then M is sequentially compact.
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Lemma
If a sequence (sn) on a frame L does not cluster, then there is a
countable cover {bn} of L with bn ≤ bn+1 for each n ∈ N and
sm(bn) = 0 for any m ≥ n in N.
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Theorem
A frame L is countably compact iff every sequence on L clusters.

Corollary

L is sequentially compact ⇒ L countably compact.
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Definition

1. A generalised filter on a frame L is a (0,∧, 1)-homomorphism
ϕ : L→ T .

2. A generalised filter ϕ : L→ T is strongly convergent if there
is a frame homomorphism h : L→ T with h ≤ ϕ.

3. A sublocale L
h
� M is strongly convergence closed if for any

generalised filter ϕ on M, ϕh strongly convergent ⇒ ϕ
strongly convergent.

Proposition

A sublocale L
h
� M is closed iff it is strongly convergence closed.
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Definition

1. A sublocale L
h
� M is extension closed if for every cover C of

M there is a cover D of L such that h[D] = C .

2. A sublocale L
h
� M is nearly closed if for every cover C of M

there is a cover D of L such that for each d ∈ D there is a
finite A ⊆ C with h(d) ≤

∨
A.

Remark

1. L
h
� M is extension closed iff for every cover C of M, h∗[C ]

covers L.

2. L
h
� M is nearly closed iff for every directed cover C of M,

h∗[C ] covers L.
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Definition

1. L
h
� M is (countably) extension closed if for every (countable)

cover C of M, h∗[C ] covers L.

2. L
h
� M is (countably) nearly closed if for every (countable)

directed cover C of M, h∗[C ] covers L.

3. An up-set F in L is A-convergent if any A-cover of L meets F ,
where A ∈ {countable, directed, countable directed}.

Proposition

L
h
� M is 〈appropriate notion〉 closed iff for every up-set F on L,

h−1(F ) 〈obvious〉-convergent ⇒ F 〈obvious〉-convergent.
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Proposition

1. If L is countably compact and L
h
� M countably nearly closed,

then M is countably compact.

2. If M is countably compact then any L
h
� M is countably

nearly closed.

3. For a sublocale, the following closure properties relate:

Closed +3Extension
closed

+3

��

%-
Nearly closed

��

Sequentially
closed

��
Countably

extension closed
+3 Countably
nearly closed

+3Cluster
closed
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