Sequential and countability properties in frames

David Holgate

University of the Western Cape South Africa

BLAST 2013

イロン イヨン イヨン イヨン

æ

Consider the interplay of sequences and certain countability, closure and compactness properties in topology.

- Convergence (sequences, filters) characterising notions of closure and closedness.
- X is countably compact \Leftrightarrow every sequence in X clusters.
- X sequentially compact \Rightarrow X is countably compact.
- A sequentially closed subspace of a sequentially compact space is sequentially compact.
- The product of a sequentially compact and a countably compact space is countably compact.

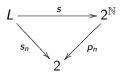
Naive, emboldened by recent results on pseudocompactness.

イロト イポト イヨト イヨト

A sequence in a space X is a continuous map $f:\mathbb{N} o X.$ So, as first attempt...

Definition

A sequence in a frame L is a homomorphism $s: L \to \mathcal{P}(\mathbb{N})$.



Thus s is a sequence of points. This will surely be inadequate, none the less the natural definitions and initial results build some intuition.

イロト イポト イヨト イヨト

A sequence s converges in L if for any cover C of L there exists

 $a \in C$ and $n \in \mathbb{N}$ such that $m \ge n \Rightarrow s_m(a) \neq 0$.

(The filter base of tails of the sequence is convergent; s is eventually non-zero on a.)

Proposition

If a sequence s converges in L then it has a "limit" $t: L \to 2$ given by $t(a) = 1 \Leftrightarrow \exists n \in \mathbb{N} \ \forall m \ge n, \ s_m(a) \ne 0.$

One can proceed with natural definitions of subsequence, clustering, sequential closure, sequential compactness and establish initial results relating these concepts. Inevitably, however, the notion is inadequate.

イロト イポト イヨト イヨト

A (generalised) sequence on a frame L is a collection of frame homomorphisms $s_n : L \to T_n$ indexed by \mathbb{N} .

Definition

- 1. A sequence (s_n) on L is *convergent* if for any cover C of L there exists $a \in C$ and $n \in \mathbb{N}$ such that $m \ge n \Rightarrow s_m(a) \ne 0$.
- 2. A sequence (s_n) on *L* clusters if for any cover *C* of *L* there exists $a \in C$ such that for all $n \in \mathbb{N}$ there exists $m \ge n$ with $s_m(a) \ne 0$.

Proposition

If a sequence (s_n) has a convergent subsequence then (s_n) clusters.

イロト イポト イヨト イヨト

- 1. A sublocale $L \xrightarrow{h} M$ is sequentially closed if for any sequence (s_n) on M, if (s_nh) is convergent then so is (s_n) .
- 2. A frame *L* is *sequentially compact* if any sequence on *L* has a convergent subsequence.

Proposition

- 1. If L is sequentially compact and $h: K \to L$ injective, then K is sequentially compact.
- 2. If L is sequentially compact and $L \xrightarrow{h} M$ a sequentially closed sublocale, then M is sequentially compact.

Lemma

If a sequence (s_n) on a frame L does not cluster, then there is a countable cover $\{b_n\}$ of L with $b_n \leq b_{n+1}$ for each $n \in \mathbb{N}$ and $s_m(b_n) = 0$ for any $m \geq n$ in \mathbb{N} .

소리가 소문가 소문가 소문가

Theorem

A frame L is countably compact iff every sequence on L clusters.

Corollary

L is sequentially compact \Rightarrow L countably compact.

- 1. A generalised filter on a frame L is a $(0, \land, 1)$ -homomorphism $\varphi: L \to T$.
- 2. A generalised filter $\varphi : L \to T$ is strongly convergent if there is a frame homomorphism $h : L \to T$ with $h \leq \varphi$.
- 3. A sublocale $L \xrightarrow{h} M$ is strongly convergence closed if for any generalised filter φ on M, φh strongly convergent $\Rightarrow \varphi$ strongly convergent.

Proposition

A sublocale $L \xrightarrow{h} M$ is closed iff it is strongly convergence closed.

・ロン ・回と ・ヨン・

- 1. A sublocale $L \xrightarrow{h} M$ is *extension closed* if for every cover C of M there is a cover D of L such that h[D] = C.
- 2. A sublocale $L \xrightarrow{h} M$ is *nearly closed* if for every cover C of M there is a cover D of L such that for each $d \in D$ there is a finite $A \subseteq C$ with $h(d) \leq \bigvee A$.

Remark

- 1. $L \xrightarrow{h} M$ is extension closed iff for every cover C of M, $h_*[C]$ covers L.
- 2. $L \xrightarrow{h} M$ is nearly closed iff for every directed cover C of M, $h_*[C]$ covers L.

- 1. $L \xrightarrow{h} M$ is (countably) extension closed if for every (countable) cover C of M, $h_*[C]$ covers L.
- 2. $L \xrightarrow{h} M$ is (countably) nearly closed if for every (countable) directed cover C of M, $h_*[C]$ covers L.
- 3. An up-set *F* in *L* is *A*-convergent if any A-cover of *L* meets *F*, where $A \in \{\text{countable, directed}, \text{ countable directed}\}$.

Proposition

 $L \xrightarrow{h} M$ is (appropriate notion) closed iff for every up-set F on L, $h^{-1}(F)$ (obvious)-convergent $\Rightarrow F$ (obvious)-convergent.

・ロト ・回ト ・ヨト ・ヨト

Proposition

- 1. If L is countably compact and $L \xrightarrow{h} M$ countably nearly closed, then M is countably compact.
- 2. If M is countably compact then any $L \xrightarrow{h} M$ is countably nearly closed.
- 3. For a sublocale, the following closure properties relate:

