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Basic objects of study are Borel equivalence relations E on Polish
spaces X. We frequently regard X as a standard Borel space.

The notion of complexity is provided be the concept of reduction.

Definition
» We say E is reducible to F, E < F, if there is a Borel function
f: X — Y such that xE y < f(x)F f(y).
» We say E is bi-reducible with F, E ~ F, if E<F and F < E.

» We say E is emdeddable into F, E C F, if in addition f is
one-to-one.

Note that a reduction gives a definable injection from X/E to
Y /F so reduction can be viewed as a notion of definable
cardinality for these quotient spaces.
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We say E is a countable (Borel) equivalence relation if all classes
of E are countable.

If G is a Polish group and G acts on X, then the orbit equivalence
relation Eg is defined by

xEcy < 3dge G (g-x=y).

The Feldman-Moore theorem says that every countable Borel
equivalence relation is given by the Borel action of a countable
group G. The case G = Z is the classical case of discrete-time
dynamics.

So, we can study the equivalence relations Eg group by group.
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The simplest equivalence relations are the smooth or tame ones.

Definition
E is smooth if there is a Borel reduction of E to equality relation
on a Polish space.

So, for a smooth E, X/E can be regarded as a subset of a
standard Borel space.

For countable Borel E, smooth is the same as saying there is a
Borel selector for E.
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Definition
Egp is the equivalence relation on 2“ given by

xEyy < In¥Ym > n (x(m) = y(m)).

The Harrington-Kechris-Louveau theorem says that if E is a Borel
equivalence relation then either E is smooth or Eg C E.

So, there is no complexity class of equivalence relation strictly
between the smooth relation E_ and Ep.
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If G is a Polish group, G acts of F(G) by the shift action
g-F={gf: feF}

We can view this action as being on 2¢ by

g - x(h) = x(g ')

We call this the Bernoulli (left) shift action of G on 2¢. When G
is countable, 2€ is a compact Polish space in the natural product
topology.
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Countable Equivalence Relations

We let E(2©) denote the shift action of G on 2¢, and F(2€)
denote the free part of 2¢ with the shift action.

Theorem (Dougherty-J-Kechris)

The shift action of F» on 2F2 is a universal countable Borel
equivalence relation, that is, E < E(2F2) for any countable Borel E.
In general, the shift action is more or less universal for actions of G:

Fact
Let E the the orbit equivalence relation for a Borel action of the
countable group G on a Polish space X. Then

E < E((2)°) < E(25°%).
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Definition
A countable Borel equivalence relation E is hyperfinite if E is the
increasing union of relations E, with finite classes.

Theorem (Slaman-Steel)
The following are equivalent:
> E is hyperfinite.
» £ = E; where G =Z.
» The classes of E can be uniformly Borel ordered in type Z (or
are finite).
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Definition
Let £ be a Borel equivalence relation. A marker set M is a Borel
set M C X such that M N [x] # 0, M N [x] # 0 for every x € X.

Usually we require some additional properties on M, related to the
structure of G.

Many argument in dynamics/ergodic theory and descriptive
dynamics use markers sets with certain properties (e.g., Rochlin’s
lemma, Ornstein’s theorem, Slaman-Steel theorem).

Hyperfiniteness proofs also typically use marker arguments.
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Theorem (Weiss)
Every Borel action by Z" is hyperfinite.

Theorem (Gao-J)
Every Borel action by a countable abelian group is hyperfinite.

Weiss' proof (and several other proofs of this result) use a basic
marker lemma:

Lemma
For each m, there is a relatively clopen M, C F(2%") such that

L Yx#y € Mn [p(x,y) > m]
2. Vx € F(22") 3y € My, [p(x,y) < m]

For the abelian result, we need markers with more regularity.
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By a set of marker regions we mean a Borel equivalence relation
R C E with dom(R) a complete section and all classes of R finite.

We say R is clopen if for each g € G the set {x € X: xR g - x} is
relatively clopen in dom(E).

We say the marker regions from a tiling if dom(R) = dom(E).

Lemma

For each n, there is a clopen set of markers R, for F(22") which
form a tiling and such that each R class is a rectangle with each
side length in {n,n + 1}.

We call this a clopen, almost square tiling.
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The following question arises in several problems.

Question

Can we get a (Borel or clopen) rectangular tiling of F(2%") which
is “almost lined-up”?
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Note that a (Borel or clopen) almost lined-up tiling would have the
following consequences:
» There would be a (Borel or clopen) “lining” of F(2%2%%).
» There would be a (Borel or continuous) proper action of
7 x 7 on each class of F(22%7%).

The existence of a lining seems to be related to the (Borel,
continuous) chromatic number problem for F(2%").

Theorem (Kechris-Soleci-Todorcevic)
3<xp(m) <m+1.

Theorem (Gao-J)
3 < xp(m) < xe(m) < 4.
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2-colorings and minimality

Definition
A 2-coloring of a group G is an x: G — {0, 1} satisfying the
following: for every s # 1, there is a finite T = T(s) C G such
that:

Vg e G At e T (x(gt) # x(gst)).

The notion of a 2-coloring was formulated independently by
Pestov, and Glassner-Uspensky independently showed many groups
admit 2-colorings.

Fact o
x € 2% is a 2-coloring iff [x] C F(2°).
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Definition o
x € 2€ is minimal if [x] is a minimal closed invariant set (subflow),
that is, Vy € [x] ([y] = [x])-

Being minimal has a combinatorial reformulation.

Fact
x € 2C is minimal iff for every A € G<¥ there isa T € G<¥ such
that
Vg e G Jte T Vae A (x(gta) = x(a)).
Remark

Minimal x exist in any subflow of any 2¢ (don't need AC in fact).

S. Jackson Forcing, Equivalence Relations and Marker Structures



Theorem (Gao-J-Seward)
Every countable group G has a 2-coloring.
So, there is a compact invariant set [x] C F(29).

An early consequence of this was the following. Recall
(Slaman-Steel) that for any countable equivalence relation there
are Borel complete sections B, such that ﬂn B, =0.

Corollary
Let B, C F(2°) be relatively clopen complete sections. Then

N, Bn # 0.
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minimal 2-coloring forcing

Theorem (GJS; minimal 2-coloring forcing)

For any countable group I there is separative forcing notion P
on which T acts by automorphisms and such that

0 I+ (xg is a minimal 2-coloring of T).
The forcing can be described directly, or an instance of
orbit-forcing.

Definition
Let x € F(2"). P, is the forcing notion

Py={pe2~":3gel (p=g x|dom(p))}
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A generic G for P, produces an x¢ € [x].
If x is a minimal 2-coloring, then x¢ will also be a minimal

2-coloring.

» Varying x can produce different forcing effects.

» The forcings can also be described directly by (usually)
finitary p € 2<C with extra side-conditions.

To illustrate the give the direct definition of P, for the case
r=72x17.

S. Jackson Forcing, Equivalence Relations and Marker Structures



Pme consists of conditions
p=(Pisos---sSm Toy--vy Tni Aoy s Ami Uny ooy Un)

satisfying the following:
1. pe 2R where R=[a,b] x [c,d] C Z x Z.

2. To,.... Tn, U, ..., Uy € 2<(ZxZ),

3. A €2<BxZ) and 3h [p | (h- (dom(A)))) = A

4. Yg € dom(p) Vi < n 3t € T; [gt, gst € dom(p) A p(gt) #
p(gst)]

5. Vg edom(p) Vi <m3te Ui [p] (gt-(dom(A}))) = Aj]
and

Vg € dom(p) Vi < m 3t € U; [p | (gt-(dom(A;))) =1— A

S. Jackson Forcing, Equivalence Relations and Marker Structures



We have the following facts about Pp,c.

Lemma
Forany g € Z x Z, Dg = {p: g € dom(p) is dense.

Lemma
For each s # (0,0) in Z x Z, Ds = {p: 3i (s = s;)} is dense.

Lemma
Vp € Ppc VAC P

Dpa={q:3i < mg AC Ai(q)}is dense below p].
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Let G be a generic for Ppc, and let x¢ = U{p: p € G}. So,
XG € QS(ZXZ).

The first lemma shows that xg = 22%% the second lemma shows
that x¢ is a 2-coloring, and the third lemma shows that x¢ is
minimal.

For example, to show second lemma, copy the domain R of p to a
larger rectangular domain using copies of p and 1 — p in such a
way that we block the shift s.
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Two theorems for general groups

The following two theorems are proved using Pp,c.

Theorem (GJS)
Let G be a countable group and E¢g the equivalence relation
generated by the shift action of G on F(2¢). Let B, C X be Borel

complete sections, and let f: w — w with limsup f = co. There
there an x € F(2€) such that 3°n p(x, B,) < f(n).

Remark

The Slaman-Steel markers are Borel complete sections B, C F(2%)
with N, Bn = 0.

Remark

There does exists a sequence B, C F(2%") of relatively clopen
complete sections such that for all x € F(2%") we have
p(x, Bp) — .
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Theorem (GJS)

Let G be a countable group and E¢ the equivalence relation
generated by the shift action of G on F(2°). Let

f: (F(2°),Eg) — (Y, F) be a Borel invariant map (i.e., F is a
factor of Eg). Then F has a recurrent point.

By a recurrent point y € Y we mean that for every non-empty
open set U C Y thereisa A € G<¥ such that
Vzely] 3geAg-yeU.

In fact, for any non-empty Borel set B C Y, thereisay e Y
which is recurrent for B.
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Special Groups

We specialize to the groups G = Z".

Some of these results are related to the coloring problem for Z".

Question (Kechris-Solecki-Todorcevic)
What the Borel/clopen chromatic number of F(2%")?

It is known (Gao-Jackson) that

3 < xp(F2%")) < xe(F(27")) < 4
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Theorem

There does not exists a Borel coloring c: F(2%") — k such that for
every x € F(27") there are arbitrarily large regions in [x] which are
2-colored by c.

To prove this we need a variation of the minimal 2-coloring forcing
which we call the odd minimal 2-coloring forcing.

Conditions in this forcing P, are just like those of P (the minimal
2-coloring forcing) except we require that the domain of p have
odd side lengths.

Previous density lemmas go through just as before.
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Suppose c: F(22") — k is Borel. Let x = xg where G is generic
for P,.

Suppose p=(p;---) € G and plF c(xg) =0, say.
Let g < p, g € G, be such that p C A; for some A; € ﬁ(q)

Let r < g, r € G be such that there are copies of § an odd
distance apart in 7 (such sets are dense).

Let g € Z" be such that g - x [ R is 2-colored by ¢, where R is
sufficiently large (say twice the size of R).

For some h € Z" we have hg - x | dom(r) =7 and
hg(dom(r)) C R. This is a contradiction as gh - x is still generic.
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A Ramsey-type result

Theorem

Let B C F(2%") be Borel. Then there is an x € F(22") and a
rectangular lattice L C [x] such that either L C B or L C B°.
If B is a complete section, then we have L C B.

We use another variation of the minimal 2-coloring forcing. We use
a forcing which builds a minimal 2-coloring but all conditions have
a periodicity requirement.

Conditions of the form

p=(R,A,{a b}, c,N)
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» RC Z x Z is a rectangle.

» A is a translate of a rectangular lattice L and Z? is the
disjoint union of 4R for ¢ € A.

{a,b} CR
c: (U5€A5(R - {aa b}) - {07 1}
» A C L is a rectangular lattice and ¢ has period A.

v

v

v

(local recognizability) If x € A, y ¢ A, then thereisa g € R
such that c(gx) # c(gy) and both are defined.

Remark

The local recognizability condition is not necessary as it will hold
generically.
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Figure: a condition in the forcing
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Figure: the extension relation
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Recent Results

Using variations of minimal 2-colorings we have the following.

Theorem
There is no continuous “lining” of F(27*%).

Corollary

This is no clopen, almost lined up rectangular marker regions for
F(27%7),

Extending (and simplifying) these arguments Ed Krohne has
shown:

Theorem

There is no continuous 3-coloring of F(2%%%).
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So we have:

3 ifn=1
4 ifn>2

Xe(F(2) = {

For n > 2 we still don't know x(F(2%")).
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