Forcing, Equivalence Relations and Marker Structures

S. Jackson

(joint with S. Gao, E. Krohne, and B. Seward)

Department of Mathematics
University of North Texas

August, 2013
Chapman University
Basic objects of study are Borel equivalence relations E on Polish spaces X. We frequently regard X as a standard Borel space.

The notion of complexity is provided be the concept of \textit{reduction}.

\textbf{Definition}

- We say E is \textbf{reducible} to F, $E \leq F$, if there is a Borel function $f : X \to Y$ such that $x E y \iff f(x) F f(y)$.
- We say E is bi-reducible with F, $E \sim F$, if $E \leq F$ and $F \leq E$.
- We say E is emdeddable into F, $E \sqsubseteq F$, if in addition f is one-to-one.

Note that a reduction gives a definable injection from X/E to Y/F so reduction can be viewed as a notion of definable cardinality for these quotient spaces.
We say E is a countable (Borel) equivalence relation if all classes of E are countable.

If G is a Polish group and G acts on X, then the orbit equivalence relation E_G is defined by

$$xE_G y \iff \exists g \in G \ (g \cdot x = y).$$

The Feldman-Moore theorem says that every countable Borel equivalence relation is given by the Borel action of a countable group G. The case $G = \mathbb{Z}$ is the classical case of discrete-time dynamics.

So, we can study the equivalence relations E_G group by group.
The simplest equivalence relations are the smooth or tame ones.

Definition

E is smooth if there is a Borel reduction of E to equality relation on a Polish space.

So, for a smooth E, X/E can be regarded as a subset of a standard Borel space.

For countable Borel E, smooth is the same as saying there is a Borel selector for E.
Definition
E_0 is the equivalence relation on 2^ω given by

$$xE_0 y \iff \exists n \forall m \geq n (x(m) = y(m)).$$

The Harrington-Kechris-Louveau theorem says that if E is a Borel equivalence relation then either E is smooth or $E_0 \sqsubseteq E$.

So, there is no complexity class of equivalence relation strictly between the smooth relation E_\equiv and E_0.
If G is a Polish group, G acts of $F(G)$ by the shift action

$$g \cdot F = \{gf : f \in F\}$$

We can view this action as being on 2^G by

$$g \cdot x(h) = x(g^{-1}h)$$

We call this the Bernoulli (left) shift action of G on 2^G. When G is countable, 2^G is a compact Polish space in the natural product topology.
Countable Equivalence Relations

We let $E(2^G)$ denote the shift action of G on 2^G, and $F(2^G)$ denote the free part of 2^G with the shift action.

Theorem (Dougherty-J-Kechris)

The shift action of F_2 on 2^{F_2} is a universal countable Borel equivalence relation, that is, $E \leq E(2^{F_2})$ for any countable Borel E.

In general, the shift action is more or less universal for actions of G:

Fact

Let E the the orbit equivalence relation for a Borel action of the countable group G on a Polish space X. Then

$$E \leq E((2^\omega)^G) \leq E(2^G \times \mathbb{Z}).$$
Definition
A countable Borel equivalence relation E is hyperfinite if E is the increasing union of relations E_n with finite classes.

Theorem (Slaman-Steel)
The following are equivalent:

- E is hyperfinite.
- $E = E_G$ where $G = \mathbb{Z}$.
- The classes of E can be uniformly Borel ordered in type \mathbb{Z} (or are finite).
Markers

Definition

Let E be a Borel equivalence relation. A marker set M is a Borel set $M \subseteq X$ such that $M \cap [x] \neq \emptyset$, $M^c \cap [x] \neq \emptyset$ for every $x \in X$.

Usually we require some additional properties on M, related to the structure of G.

Many argument in dynamics/ergodic theory and descriptive dynamics use markers sets with certain properties (e.g., Rochlin’s lemma, Ornstein’s theorem, Slaman-Steel theorem).

Hyperfiniteness proofs also typically use marker arguments.
Theorem (Weiss)

Every Borel action by \mathbb{Z}^n is hyperfinite.

Theorem (Gao-J)

Every Borel action by a countable abelian group is hyperfinite.

Weiss’ proof (and several other proofs of this result) use a basic marker lemma:

Lemma

For each m, there is a relatively clopen $M_m \subseteq F(2^{\mathbb{Z}^n})$ such that

1. $\forall x \neq y \in M_m \ [\rho(x, y) > m]$

2. $\forall x \in F(2^{\mathbb{Z}^n}) \ \exists y \in M_m \ [\rho(x, y) \leq m]$

For the abelian result, we need markers with more regularity.
By a set of **marker regions** we mean a Borel equivalence relation $\mathcal{R} \subseteq E$ with $\text{dom}(\mathcal{R})$ a complete section and all classes of \mathcal{R} finite.

We say \mathcal{R} is clopen if for each $g \in G$ the set $\{x \in X : x \mathcal{R} g \cdot x\}$ is relatively clopen in $\text{dom}(E)$.

We say the marker regions form a **tiling** if $\text{dom}(\mathcal{R}) = \text{dom}(E)$.

Lemma

For each n, there is a clopen set of markers \mathcal{R}_n for $F(2^{\mathbb{Z}_m})$ which form a tiling and such that each \mathcal{R} class is a rectangle with each side length in $\{n, n + 1\}$.

We call this a clopen, almost square tiling.
The following question arises in several problems.

Question
Can we get a (Borel or clopen) rectangular tiling of $F(2^\mathbb{Z}_m)$ which is “almost lined-up”?

![Diagram of a rectangular tiling](image)
Note that a (Borel or clopen) almost lined-up tiling would have the following consequences:

- There would be a (Borel or clopen) “lining” of $F(2^\mathbb{Z}\times\mathbb{Z})$.
- There would be a (Borel or continuous) proper action of $\mathbb{Z}\times\mathbb{Z}$ on each class of $F(2^\mathbb{Z}\times\mathbb{Z})$.

The existence of a lining seems to be related to the (Borel, continuous) chromatic number problem for $F(2^{\mathbb{Z}^m})$.

Theorem (Kechris-Soleci-Todorcevic)

$$3 \leq \chi_b(m) \leq m + 1.$$

Theorem (Gao-J)

$$3 \leq \chi_b(m) \leq \chi_c(m) \leq 4.$$
Definition
A 2-coloring of a group G is an $x: G \to \{0, 1\}$ satisfying the following: for every $s \neq 1_G$, there is a finite $T = T(s) \subseteq G$ such that:

$$\forall g \in G \exists t \in T \ (x(gt) \neq x(gst)).$$

The notion of a 2-coloring was formulated independently by Pestov, and Glassner-Uspensky independently showed many groups admit 2-colorings.

Fact
$x \in 2^G$ is a 2-coloring iff $[x] \subseteq F(2^G)$.
Definition

$x \in 2^G$ is **minimal** if $[x]$ is a minimal closed invariant set (subflow), that is, $\forall y \in [x] ([y] = [x])$.

Being minimal has a combinatorial reformulation.

Fact

$x \in 2^G$ is minimal iff for every $A \in G^{< \omega}$ there is a $T \in G^{< \omega}$ such that

$$\forall g \in G \ \exists t \in T \ \forall a \in A \ (x(gta) = x(a)).$$

Remark

Minimal x exist in any subflow of any 2^G (don’t need AC in fact).
Theorem (Gao-J-Seward)

Every countable group G has a 2-coloring.

So, there is a compact invariant set $[x] \subseteq F(2^G)$.

An early consequence of this was the following. Recall (Slaman-Steel) that for any countable equivalence relation there are Borel complete sections B_n such that $\bigcap_n B_n = \emptyset$.

Corollary

Let $B_n \subseteq F(2^G)$ be relatively clopen complete sections. Then $\bigcap_n B_n \neq \emptyset$.
Theorem (GJS; minimal 2-coloring forcing)

For any countable group Γ there is separative forcing notion \mathbb{P}_{mc} on which Γ acts by automorphisms and such that

$$\emptyset \vdash (x_G \text{ is a minimal 2-coloring of } \Gamma).$$

The forcing can be described directly, or an instance of orbit-forcing.

Definition

Let $x \in F(2^\Gamma)$. \mathbb{P}_x is the forcing notion

$$\mathbb{P}_x = \{ p \in 2^{<\Gamma} : \exists g \in \Gamma \ (p = g \cdot x \upharpoonright \text{dom}(p)) \}$$
A generic G for \mathbb{P}_x produces an $x_G \in [x]$.

If x is a minimal 2-coloring, then x_G will also be a minimal 2-coloring.

- Varying x can produce different forcing effects.
- The forcings can also be described directly by (usually) finitary $\hat{p} \in 2^{\prec G}$ with extra side-conditions.

To illustrate the give the direct definition of \mathbb{P}_{mc} for the case $\Gamma = \mathbb{Z} \times \mathbb{Z}$.
\(\mathbb{P}_{mc} \) consists of conditions

\[
p = (\hat{p}; s_0, \ldots, s_n; T_0, \ldots, T_n; A_0, \ldots, A_m; U_0, \ldots, U_m)
\]
satisfying the following:

1. \(\hat{p} \in 2^R \) where \(R = [a, b] \times [c, d] \subseteq \mathbb{Z} \times \mathbb{Z} \).
2. \(T_0, \ldots, T_n, U_0, \ldots, U_m \in 2^{<(\mathbb{Z} \times \mathbb{Z})} \).
3. \(A_i \in 2^{<(\mathbb{Z} \times \mathbb{Z})} \) and \(\exists h \) \([\hat{p} \upharpoonright (h \cdot (\text{dom}(A_i))) = A_i] \).
4. \(\forall g \in \text{dom}(\hat{p}) \forall i \leq n \exists t \in T_i \ [gt, gst \in \text{dom}(\hat{p}) \land \hat{p}(gt) \neq \hat{p}(gst)] \)
5. \(\forall g \in \text{dom}(\hat{p}) \forall i \leq m \exists t \in U_i \ [\hat{p} \upharpoonright (gt \cdot (\text{dom}(A_i))) = A_i] \)
 and
 \(\forall g \in \text{dom}(\hat{p}) \forall i \leq m \exists t \in U_i \ [\hat{p} \upharpoonright (gt \cdot (\text{dom}(A_i))) = 1 - A_i] \)
We have the following facts about \mathbb{P}_{mc}.

Lemma

For any $g \in \mathbb{Z} \times \mathbb{Z}$, $D_g = \{p: g \in \text{dom}(\hat{p}) \text{ is dense}\}$.

Lemma

For each $s \neq (0, 0)$ in $\mathbb{Z} \times \mathbb{Z}$, $D_s = \{p: \exists i \ (s = s_i)\}$ is dense.

Lemma

$\forall p \in \mathbb{P}_{mc} \ \forall A \subseteq \hat{p} \ \exists i \leq m_q \ A \subseteq A_i(q)$ is dense below p.

$D_{p,A} = \{q: \exists i \leq m_q \ A \subseteq A_i(q)\}$.
Let G be a generic for \mathbb{P}_{mc}, and let $x_G = \bigcup\{\hat{p}: p \in G\}$. So, $x_G \in 2^{(\mathbb{Z} \times \mathbb{Z})}$.

The first lemma shows that $x_G = 2^{\mathbb{Z} \times \mathbb{Z}}$, the second lemma shows that x_G is a 2-coloring, and the third lemma shows that x_G is minimal.

For example, to show second lemma, copy the domain R of \hat{p} to a larger rectangular domain using copies of \hat{p} and $1 - \hat{p}$ in such a way that we block the shift s.

![Diagram showing a 2-coloring of a grid]

\[
\begin{array}{ccc}
\hat{p} & & \bullet \text{gs} \\
\cdot & g & \\
\cdot & & 1 - \hat{p}
\end{array}
\]
The following two theorems are proved using \mathbb{P}_{mc}.

Theorem (GJS)

Let G be a countable group and E_G the equivalence relation generated by the shift action of G on $F(2^G)$. Let $B_n \subseteq X$ be Borel complete sections, and let $f : \omega \to \omega$ with $\limsup f = \infty$. There there an $x \in F(2^G)$ such that $\exists \infty n \rho(x, B_n) < f(n)$.

Remark
The Slaman-Steel markers are Borel complete sections $B_n \subseteq F(2^\mathbb{Z})$ with $\bigcap_n B_n = \emptyset$.

Remark
There does exists a sequence $B_n \subseteq F(2^{\mathbb{Z}^n})$ of relatively clopen complete sections such that for all $x \in F(2^{\mathbb{Z}^n})$ we have $\rho(x, B_n) \to \infty$.
Theorem (GJS)
Let G be a countable group and E_G the equivalence relation generated by the shift action of G on $F(2^G)$. Let $f : (F(2^G), E_G) \rightarrow (Y, F)$ be a Borel invariant map (i.e., F is a factor of E_G). Then F has a recurrent point.

By a recurrent point $y \in Y$ we mean that for every non-empty open set $U \subseteq Y$ there is a $A \in G^{<\omega}$ such that
\[\forall z \in [y] \exists g \in A \ g \cdot y \in U. \]

In fact, for any non-empty Borel set $B \subseteq Y$, there is a $y \in Y$ which is recurrent for B.
We specialize to the groups $G = \mathbb{Z}^n$.

Some of these results are related to the coloring problem for \mathbb{Z}^n.

Question (Kechris-Solecki-Todorcevic)

What the Borel/clopen chromatic number of $F(2^{\mathbb{Z}^n})$?

It is known (Gao-Jackson) that

$$3 \leq \chi_b(F(2^{\mathbb{Z}^n})) \leq \chi_c(F(2^{\mathbb{Z}^n})) \leq 4$$
Theorem

There does not exist a Borel coloring $c : F(2\mathbb{Z}^n) \to k$ such that for every $x \in F(2\mathbb{Z}^n)$ there are arbitrarily large regions in $[x]$ which are 2-colored by c.

To prove this we need a variation of the minimal 2-coloring forcing which we call the odd minimal 2-coloring forcing.

Conditions in this forcing \mathbb{P}_o are just like those of \mathbb{P} (the minimal 2-coloring forcing) except we require that the domain of \hat{p} have odd side lengths.

Previous density lemmas go through just as before.
Suppose $c : F(2^{\mathbb{Z}^n}) \to k$ is Borel. Let $x = x_G$ where G is generic for \mathbb{P}_\circ.

Suppose $p = (\hat{p}; \cdots) \in G$ and $p \models c(x_G) = 0$, say.

Let $q \leq p$, $q \in G$, be such that $\hat{p} \subseteq A_i$ for some $A_i \in \tilde{A}(q)$.

Let $r \leq q$, $r \in G$ be such that there are copies of \hat{q} an odd distance apart in \hat{r} (such sets are dense).

Let $g \in \mathbb{Z}^n$ be such that $g \cdot x \mid R$ is 2-colored by c, where R is sufficiently large (say twice the size of R).

For some $h \in \mathbb{Z}^n$ we have $hg \cdot x \mid \text{dom}(r) = \hat{r}$ and $hg(\text{dom}(r)) \subseteq R$. This is a contradiction as $gh \cdot x$ is still generic.
A Ramsey-type result

Theorem

Let \(B \subseteq F(2^\mathbb{Z}^n) \) be Borel. Then there is an \(x \in F(2^\mathbb{Z}^n) \) and a rectangular lattice \(L \subseteq [x] \) such that either \(L \subseteq B \) or \(L \subseteq B^c \). If \(B \) is a complete section, then we have \(L \subseteq B \).

We use another variation of the minimal 2-coloring forcing. We use a forcing which builds a minimal 2-coloring but all conditions have a periodicity requirement.

Conditions of the form

\[p = (R, \Delta, \{a, b\}, c, \Lambda) \]
- $R \subseteq \mathbb{Z} \times \mathbb{Z}$ is a rectangle.
- Δ is a translate of a rectangular lattice L and \mathbb{Z}^2 is the disjoint union of δR for $\delta \in \Delta$.
- $\{a, b\} \subseteq R$
- $c: (\bigcup_{\delta \in \Delta} \delta(R - \{a, b\})) \rightarrow \{0, 1\}$.
- $\Lambda \subseteq L$ is a rectangular lattice and c has period Λ.
- (local recognizability) If $x \in \Delta$, $y \notin \Delta$, then there is a $g \in R$ such that $c(gx) \neq c(gy)$ and both are defined.

Remark
The local recognizability condition is not necessary as it will hold generically.
Figure: a condition in the forcing
Figure: the extension relation
Using variations of minimal 2-colorings we have the following.

Theorem
There is no continuous “lining” of $F(2^\mathbb{Z} \times \mathbb{Z})$.

Corollary
This is no clopen, almost lined up rectangular marker regions for $F(2^\mathbb{Z} \times \mathbb{Z})$.

Extending (and simplifying) these arguments Ed Krohne has shown:

Theorem
There is no continuous 3-coloring of $F(2^\mathbb{Z} \times \mathbb{Z})$.
So we have:

\[\chi_c(F(2^{\mathbb{Z}^n})) = \begin{cases}
3 & \text{if } n = 1 \\
4 & \text{if } n \geq 2
\end{cases} \]

For \(n \geq 2 \) we still don’t know \(\chi_b(F(2^{\mathbb{Z}^n})) \).