The assembly, Smyth's stable compactifications and the patch frame

BLAST 2013

What's what

A frame

... has the algebraic structure of a topology. Use frames (locales) as substitutes for spaces.

The assembly of a frame

- ... categorically, is the analogue of the powerset (object of subobjects).
- ...topologically, is the analogue of declaring open sets to be closed.

The patch topology

... declares all compact (saturated) sets to be closed.

Stable compactification

 \dots is the T_0 analogue of Hausdorff compactification.

The assembly of a frame as a pushout

Figure: Idl L = Iargest stable compactification (ideal completion), Patch <math>Idl L = Iargest stable compact regular reflection, <math>Iargestable L = Iargest stable compact regular reflection, <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal completion), Patch <math>Iargestable L = Iargest stable compactification (ideal compactification), Patch <math>Iargestable L = Iargest stable compactification (ideal compactification), Patch <math>Iargestable L = Iargest stable compactification (ideal compactification), Patch <math>Iargestable L = Iargest stable compactification (ideal compactification), Patch <math>Iargestable L = Iargest stable compactification (ideal compactification), Patch <math>Iargestable L = Iargest stable compactification (ideal compactification), Patch <math>Iargestable L = Iargest stable compactification (ideal compactification), Patch <math>Iargestable L

How to construct the patch of a stably continuous frame (Jung, Moshier)

Start with a stably continuous frame M (e.g. Idl L). Its Lawson dual M^{\wedge} (Scott open filters, ordered by inclusion) is another stably continuous frame. Construct a frame by generators and relations:

Generators

- One generator $\lceil a \rceil^+$ for every element of M,
- One generator $\lceil \phi \rceil^-$ for every Scott open filter $\phi \in M^{\wedge}$.

Relations enforcing that

- $\lceil \rceil^+$ and $\lceil \rceil^-$ are frame homomorphisms.
- If a is a lower bound of ϕ then $\neg a^{-} \neg \neg a^{-} = 0$
- If ϕ contains a then $\lceil \phi \rceil^- \sqcup \lceil a \rceil^+ = 1$

How to construct the pushout

Start with a frame L. The Lawson dual of the ideal completion is the frame Filt L of all filters, ordered by inclusion. Construct the frame N L by generators and relations:

Generators

- One generator $\neg a^{-+}$ for every element of L,
- One generator $\lceil \phi \rceil$ for every filter $\phi \in \text{Filt } L$.

Relations enforcing that

- $\lceil \rceil^+$ and $\lceil \rceil^-$ are frame homomorphisms.
- If a is a lower bound of ϕ then $\neg a^{\neg +} \neg \neg \phi^{\neg -} = 0$
- If ϕ contains a then $\lceil \phi \rceil^- \sqcup \lceil a \rceil^+ = 1$

The patch of a continuous frame

Figure: SL = smallest stable compactification.

How to construct the pushout

Start with a continuous frame L. The Lawson dual of L is a continuous preframe L^{\wedge} . Construct the frame Patch L by generators and relations:

Generators

- One generator $\neg a^{-+}$ for every element of L,
- One generator $\lceil \phi \rceil^{-}$ for every Scott open filter $\phi \in L^{\wedge}$.

Relations enforcing that

- $\lceil \rceil^+$ and $\lceil \rceil^-$ preserve all existing joins and finite meets.
- If a is a lower bound of ϕ then $\neg a^{\neg +} \neg \neg \phi^{\neg -} = 0$
- If ϕ contains a then $\lceil \phi \rceil^- \sqcup \lceil a \rceil^+ = 1$

The patch of a locally compact space is a pullback

Figure: SX = Smyth's smallest stable compactification, FX = Fell compactification.

Perfect frame homomorphisms

A frame homomorphism is *perfect* if its right adjoint is Scott continuous. Lawson duality is a contravariant endofunctor on preframes. Our patch construction is functorial on perfect frame homomorphisms.

$$L^{\wedge} \xrightarrow{(f_*)^{\wedge}} M^{\wedge}$$

Summary (in terms of locale theory)

- The general construction universally solves the problem of transforming an auxiliary relation into the well-inside relation.
- New, easy construction of the assembly as an ordered locale.
 Frame of filters serves as lower opens w.r.t. the specialisation order of the original locale
- Extended the patch construction from stably locally compact locales to locally compact locales. Previous patches are sublocales of ours.
- Retain the universal property of the patch, retain functoriality, but lose the coreflection.

Details to appear in *Algebra Universalis*:

A presentation of the assembly of a frame by generators and relations exhibits its bitopological structure.

Yet another patch construction for continuous frames, and connections to the Fell compactification.