Generating all modular lattices of a given size BLAST 2013

Nathan Lawless

Chapman University

August 8, 2013

Nathan Lawless Generating all modular lattices of a given size

- Modular Lattices: Definitions
- The Objective: Generating and Counting Modular Lattices
- The Original Algorithm: Generating All Finite Lattices
- Improving the Algorithm
- Generating Modular and Semimodular Lattices
- Results
- Lower Bound on Modular Lattices
- Conclusion

→ Ξ →

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

э

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

• An alternative way to view modular lattices is by **Dedekind's Theorem**: *L* is a nonmodular lattice iff N₅ can be embedded into *L*.

• Examples of modular lattices are:

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

- Examples of modular lattices are:
 - Lattices of subspaces of vector spaces.

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

- Examples of modular lattices are:
 - Lattices of subspaces of vector spaces.
 - Lattices of ideals of a ring.

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

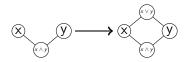
$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

- Examples of modular lattices are:
 - Lattices of subspaces of vector spaces.
 - Lattices of ideals of a ring.
 - Lattices of normal subgroups of a group.

Semimodular Lattices

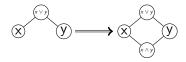
• A lattice *L* is **semimodular** if for all $x, y \in L$

 $x \wedge y \prec x, y$ implies that $x, y \prec x \lor y$.



• A lattice *L* is **lower semimodular** if for all $x, y \in L$

 $x, y \prec x \lor y$ implies that $x \land y \prec x, y$.



• **Theorem:** A finite lattice *L* is modular if and only if it is semimodular and lower semimodular.

We wish to come up with an algorithm which can efficiently generate all possible finite modular lattices of a given size n up to isomorphism. We further want to apply it to other types of lattices.

Why is this important?

- Being used for generation of modular lattices and related structures.
- Providing a tool to verify conjectures and/or find counterexamples.
- O Better understanding of modular lattices.
- Oiscovering new structural properties of modular lattices.

.

Heitzig and Reinhold [2000] developed an **orderly algorithm** to enumerate all finite lattices and used it to count the number of lattices up to size 18. To explain their algorithm, we give some definitions related to posets and lattices:

We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.

- We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.
- We say an element is an **atom** if it covers the bottom element.

- We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.
- We say an element is an **atom** if it covers the bottom element.
- We call ↑A = {x ∈ L | a ≤ x for some a ∈ A} the upper set of A.

- We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.
- We say an element is an **atom** if it covers the bottom element.
- We call ↑A = {x ∈ L | a ≤ x for some a ∈ A} the upper set of A.
- An **antichain** is a subset of *L* in which any two elements in the subset are incomparable.

- We say that b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.
- We say an element is an **atom** if it covers the bottom element.
- We call ↑A = {x ∈ L | a ≤ x for some a ∈ A} the upper set of A.
- An **antichain** is a subset of *L* in which any two elements in the subset are incomparable.
- The set of all maximal elements in L is called the first level of $L(Lev_1(L))$. The (m+1)-th level of L can be recursively defined by $lev_{m+1}(L) = Lev_1(L \bigcup_{i=1}^m Lev_i(L))$.

Counting Finite Lattices (continued)

end

Let A be an antichain of a lattice L. If A satisfies A1, we call it a **lattice-antichain**.

(A1) For any $a, b \in \uparrow A$, $a \land b \in \uparrow A \cup \{0\}$.

 L^A is constructed from L by adding an atom which is covered by exactly the elements in A. If A satisfies (A1), then L^A is a lattice. (Heitzig and Reinhold, 2000).

A recursive algorithm can be formulated that generates for a given natural number $n \ge 2$ exactly all canonical lattices up to n elements starting with the two element lattice:

```
next_lattice(integer m, canonical m-lattice L) begin
```

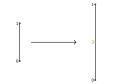
```
if m < n then
for each lattice-antichain A of L do
if L^A is a canonical lattice then
next_lattice (m+1, L^A)
if m = n then output L
```

Nathan Lawless Generating all modular lattices of a given size

《曰》《聞》《臣》《臣》

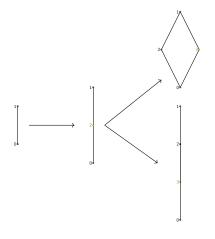
æ

1



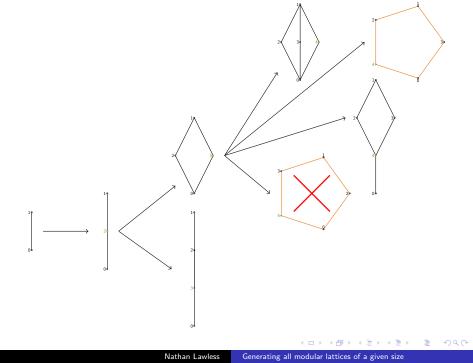
・ロト ・回ト ・ヨト ・ヨト

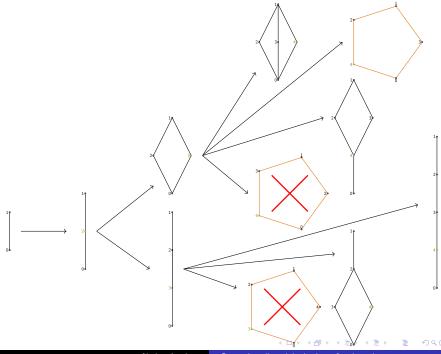
æ



▲□ ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ





Nathan Lawless Generating all modular lattices of a given size

- In order to select one isomorphic copy, a weight is defined for each lattice. If a lattice has the lowest weight among all it's permutations, it is considered canonical.
- However, this is an expensive check since it requires checking all permutations for each lattice (with some restrictions).
- The algorithm runtime can be improved by introducing a *canonical path extension*, introduced by McKay (1998):
 - We only use one arbitrary representative of each orbit in the lattice antichains of *L*.
 - When *L^A* is generated, we perform a "canonical deletion". If *L* is automorphic to the generated lattice, we consider *L^A* canonical.

通 ト イ ヨ ト イ ヨ ト

This algorithm can be modified such that when a lattice of size n is generated, the algorithm checks if it is (semi)modular. Since semimodular and modular lattices are a very small fraction of all lattices, we present some results to reduce the search space of the algorithm. Here, $Lev_k(L)$ and $Lev_{k-1}(L)$ denote the bottom and second bottom levels of L respectively.

• Semimodular Lattices Theorem: When generating semimodular lattices, for a lattice *L*, we only consider antichains *A* which satisfy **(A1)** and all of the following conditions:

(A2)
$$A \subseteq Lev_{k-1}(L)$$
 or $A \subseteq Lev_k(L)$.

- (A3) If $A \subseteq Lev_k(L)$, there are no atoms in $Lev_{k-1}(L)$.
- (A4) For all $x, y \in A$, x and y have a common cover.

• Modular Lattices Theorem: When generating modular lattices, for a lattice *L*, we only consider antichains *A* which satisfy (A1-4) and

(A5) If $A \subseteq Lev_k(L)$, $Lev_{k-1}(L)$ satisfies lower semimodularity (ie: for all $x, y \in Lev_{k-1}(L)$, $x, y \prec x \lor y$ implies $x \land y \prec x, y$) $(x \lor y) \longrightarrow (x \lor y)$ $(x \lor y)$ $(x \lor y)$

- Calculation of modular lattices of size n takes approximatelly 5.5 times the time used to generate all modular lattices of size n-1.
- In order to reach higher numbers, the algorithm was parallelized using the Message Passing Interface (MPI).
- Approximately **50 hours** were required to calculate all modular lattices of size 22 running the algorithm in parallel on 64 CPUs. It is estimated it would have taken **1 month** with the serial version.

Results

n	Lattices	Semimod. Latt.	Mod. Latt.
1	1	1	1
2	1	1	1
3	1	1	1
4	2	2	2
5	5	4	4
6	15	8	8
7	53	17	16
8	222	38	34
9	1,078	88	72
10	5,994	212	157
11	37,622	530	343
12	262,776	1376	766

Results

n	Lattices	Semimod. Latt.	Mod. Latt.	
1	1	1	1	
2	1	1	1	
3	1	1	1	
4	2	2	2	
5	5	4	4	
6	15	8	8	
7	53	17	16	
8	222	38	34	
9	1,078	88	72	
10	5,994	212	157	0
11	37,622	530	343	
12	262,776	1376	766	
13	2,018,305	3,693	1,718	Ω
14	16,873,364	10,232	3,899	
15	152,233,518	29,231	8,898	L A A
16	1,471,613,387	85,906	20,475	
17	15,150,569,446	259,291	47,321	
18	165,269,824,761	802,308	110,024	
19	-	2,540,635	256,791	
20		8,220,218	601,991	
21	-	27,134,483	1,415,768	
22	-	91,258,141	3,340,847	
				- * ロ > * @ > * 目 > * 目 > ・ 目 ・ つ & や

- **Theorem:** The number of modular lattices of size *n* up to isomorphism is greater or equal to 2^{n-3} .
- **Outline of proof:** Let *L*₃ be the three element lattice with 0 and 1 as bottom and top respectively, and let *n* 1 the last element added. Consider the following two extensions of an *n*-lattice *L*:

$$L_{lpha} = L^A$$
 where $A = \{x \in L \mid x \succ 0\}$
 $L_{eta} = L^{\{a\}}$ for an arbitary *a* such that $a \succ n - 1$

Idea: Each modular lattice L will generate two unique modular lattices L_{α} and L_{β} .

• Current upper bound for the number of all lattices up to isomorphism is approximately

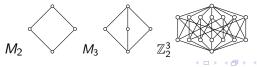
6.111344^{$$[n^{3\setminus 2}+o(n^{3\setminus 2})]$$} (Kleitman, 1980)

• Upper bound for the number of all distributive lattices is

 2.39^n (Erné, Heitzig and Reinhold, 2002).

Future Work: Another Approach?

- Is it possible to generate modular lattices more efficiently with a different approach?
- Distributive lattices have been counted up to size 49 (Erné, Heitzig and Reinhold, 2002).
- Since the difference between distributive and modular lattices is that any lattice containing M_3 is non-distributive and is modular, we tried to generate all modular lattices by inserting points in the M_2 (and other M_k) sublattices.
- This worked up to size 15, but failed to generate the projective geometry lattice. When introducing it as a construction block, it worked up to size 20.
- Difficult to prove the algorithm would generate all modular lattices.



Future Work: Generating Other Lattices

- The algorithm for generating all lattices along with the implementation of the canonical path construction provides a tool to generate any type of lattice up to size 17 or 18.
- The algorithm can be adapted to other types of lattices.
- Some lattices of interest are:
 - Semidistributive lattices.
 - 2 Almost distributive lattices.
 - Two distributive lattices.
 - Selfdual lattices.
- Numbers will be added to the On-Line Encyclopedia of Integer Sequences (OEIS).

References

- R. Belohlavek and V. Vychodil, Residuated Lattices of Size 12, Order 27 (2010), 147–161.
- R. Dedekind, Über die von drei Moduln erzeugte Dualgruppe, Math. Ann. 53 (1900), 371–403.
- M. Erné, J. Heitzig and J. Reinhold, On the number of distributive lattices, Electron. J. Combin. 9 (2002), 23 pp.
- J. Heitzig and J. Reinhold, *Counting Finite Lattices*, Algebra Univers. 48 (2002) 43–53.
- D. J. Kleitman and K. J. Winston, Combinatorial mathematics, optimal designs and their applications, Ann. Discrete Math. 6 (1980), 243249.
- B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998) 306–324.

伺 ト イヨト イヨト