
Generating all modular lattices of a given size
BLAST 2013

Nathan Lawless

Chapman University

August 8, 2013

Nathan Lawless Generating all modular lattices of a given size



Outline

Modular Lattices: Definitions

The Objective: Generating and Counting Modular Lattices

The Original Algorithm: Generating All Finite Lattices

Improving the Algorithm

Generating Modular and Semimodular Lattices

Results

Lower Bound on Modular Lattices

Conclusion

Nathan Lawless Generating all modular lattices of a given size



Modular Lattices

A modular lattice M is a lattice that satisfies the modular
law for all x , y , z ∈ M:

x ≥ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ z

or equivalently:

x ∧ [y ∨ (x ∧ z))] = (x ∧ y) ∨ (x ∧ z).

An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

0

1

2

4

3 N5

Examples of modular lattices are:

Lattices of subspaces of vector spaces.
Lattices of ideals of a ring.
Lattices of normal subgroups of a group.

Nathan Lawless Generating all modular lattices of a given size



Modular Lattices

A modular lattice M is a lattice that satisfies the modular
law for all x , y , z ∈ M:

x ≥ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ z

or equivalently:

x ∧ [y ∨ (x ∧ z))] = (x ∧ y) ∨ (x ∧ z).

An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

0

1

2

4

3 N5

Examples of modular lattices are:

Lattices of subspaces of vector spaces.
Lattices of ideals of a ring.
Lattices of normal subgroups of a group.

Nathan Lawless Generating all modular lattices of a given size



Modular Lattices

A modular lattice M is a lattice that satisfies the modular
law for all x , y , z ∈ M:

x ≥ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ z

or equivalently:

x ∧ [y ∨ (x ∧ z))] = (x ∧ y) ∨ (x ∧ z).

An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

0

1

2

4

3 N5

Examples of modular lattices are:

Lattices of subspaces of vector spaces.
Lattices of ideals of a ring.
Lattices of normal subgroups of a group.

Nathan Lawless Generating all modular lattices of a given size



Modular Lattices

A modular lattice M is a lattice that satisfies the modular
law for all x , y , z ∈ M:

x ≥ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ z

or equivalently:

x ∧ [y ∨ (x ∧ z))] = (x ∧ y) ∨ (x ∧ z).

An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

0

1

2

4

3 N5

Examples of modular lattices are:
Lattices of subspaces of vector spaces.

Lattices of ideals of a ring.
Lattices of normal subgroups of a group.

Nathan Lawless Generating all modular lattices of a given size



Modular Lattices

A modular lattice M is a lattice that satisfies the modular
law for all x , y , z ∈ M:

x ≥ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ z

or equivalently:

x ∧ [y ∨ (x ∧ z))] = (x ∧ y) ∨ (x ∧ z).

An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

0

1

2

4

3 N5

Examples of modular lattices are:
Lattices of subspaces of vector spaces.
Lattices of ideals of a ring.

Lattices of normal subgroups of a group.

Nathan Lawless Generating all modular lattices of a given size



Modular Lattices

A modular lattice M is a lattice that satisfies the modular
law for all x , y , z ∈ M:

x ≥ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ z

or equivalently:

x ∧ [y ∨ (x ∧ z))] = (x ∧ y) ∨ (x ∧ z).

An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

0

1

2

4

3 N5

Examples of modular lattices are:
Lattices of subspaces of vector spaces.
Lattices of ideals of a ring.
Lattices of normal subgroups of a group.

Nathan Lawless Generating all modular lattices of a given size



Semimodular Lattices

A lattice L is semimodular if for all x , y ∈ L

x ∧ y ≺ x , y implies that x , y ≺ x ∨ y .

x ∧ y

x y
x ∧ y

x y

x ∨ y

A lattice L is lower semimodular if for all x , y ∈ L

x , y ≺ x ∨ y implies that x ∧ y ≺ x , y .

x ∨ y

x y

x ∨ y

x y
x ∧ y

Theorem: A finite lattice L is modular if and only if it is
semimodular and lower semimodular.

Nathan Lawless Generating all modular lattices of a given size



Our Objective

We wish to come up with an algorithm which can efficiently
generate all possible finite modular lattices of a given size n up to
isomorphism. We further want to apply it to other types of
lattices.

Why is this important?

1 Being used for generation of modular lattices and related
structures.

2 Providing a tool to verify conjectures and/or find
counterexamples.

3 Better understanding of modular lattices.

4 Discovering new structural properties of modular lattices.

Nathan Lawless Generating all modular lattices of a given size



Generating Finite Lattices

Heitzig and Reinhold [2000] developed an orderly algorithm to
enumerate all finite lattices and used it to count the number of
lattices up to size 18. To explain their algorithm, we give some
definitions related to posets and lattices:

We say that b is a cover of a if a < b and there is no element
c such that a < c < b, and denote this by a ≺ b.

We say an element is an atom if it covers the bottom element.

We call ↑A = {x ∈ L | a ≤ x for some a ∈ A} the upper set
of A.

An antichain is a subset of L in which any two elements in
the subset are incomparable.

The set of all maximal elements in L is called the first level of
L (Lev1(L)). The (m+1)-th level of L can be recursively

defined by levm+1(L) = Lev1(L−
m⋃
i=1

Levi (L)).

Nathan Lawless Generating all modular lattices of a given size



Generating Finite Lattices

Heitzig and Reinhold [2000] developed an orderly algorithm to
enumerate all finite lattices and used it to count the number of
lattices up to size 18. To explain their algorithm, we give some
definitions related to posets and lattices:

We say that b is a cover of a if a < b and there is no element
c such that a < c < b, and denote this by a ≺ b.

We say an element is an atom if it covers the bottom element.

We call ↑A = {x ∈ L | a ≤ x for some a ∈ A} the upper set
of A.

An antichain is a subset of L in which any two elements in
the subset are incomparable.

The set of all maximal elements in L is called the first level of
L (Lev1(L)). The (m+1)-th level of L can be recursively

defined by levm+1(L) = Lev1(L−
m⋃
i=1

Levi (L)).

Nathan Lawless Generating all modular lattices of a given size



Generating Finite Lattices

Heitzig and Reinhold [2000] developed an orderly algorithm to
enumerate all finite lattices and used it to count the number of
lattices up to size 18. To explain their algorithm, we give some
definitions related to posets and lattices:

We say that b is a cover of a if a < b and there is no element
c such that a < c < b, and denote this by a ≺ b.

We say an element is an atom if it covers the bottom element.

We call ↑A = {x ∈ L | a ≤ x for some a ∈ A} the upper set
of A.

An antichain is a subset of L in which any two elements in
the subset are incomparable.

The set of all maximal elements in L is called the first level of
L (Lev1(L)). The (m+1)-th level of L can be recursively

defined by levm+1(L) = Lev1(L−
m⋃
i=1

Levi (L)).

Nathan Lawless Generating all modular lattices of a given size



Generating Finite Lattices

Heitzig and Reinhold [2000] developed an orderly algorithm to
enumerate all finite lattices and used it to count the number of
lattices up to size 18. To explain their algorithm, we give some
definitions related to posets and lattices:

We say that b is a cover of a if a < b and there is no element
c such that a < c < b, and denote this by a ≺ b.

We say an element is an atom if it covers the bottom element.

We call ↑A = {x ∈ L | a ≤ x for some a ∈ A} the upper set
of A.

An antichain is a subset of L in which any two elements in
the subset are incomparable.

The set of all maximal elements in L is called the first level of
L (Lev1(L)). The (m+1)-th level of L can be recursively

defined by levm+1(L) = Lev1(L−
m⋃
i=1

Levi (L)).

Nathan Lawless Generating all modular lattices of a given size



Generating Finite Lattices

Heitzig and Reinhold [2000] developed an orderly algorithm to
enumerate all finite lattices and used it to count the number of
lattices up to size 18. To explain their algorithm, we give some
definitions related to posets and lattices:

We say that b is a cover of a if a < b and there is no element
c such that a < c < b, and denote this by a ≺ b.

We say an element is an atom if it covers the bottom element.

We call ↑A = {x ∈ L | a ≤ x for some a ∈ A} the upper set
of A.

An antichain is a subset of L in which any two elements in
the subset are incomparable.

The set of all maximal elements in L is called the first level of
L (Lev1(L)). The (m+1)-th level of L can be recursively

defined by levm+1(L) = Lev1(L−
m⋃
i=1

Levi (L)).

Nathan Lawless Generating all modular lattices of a given size



Counting Finite Lattices (continued)

Let A be an antichain of a lattice L. If A satisfies A1, we call it a
lattice-antichain.

(A1) For any a, b ∈ ↑A, a ∧ b ∈ ↑A ∪ {0}.
LA is constructed from L by adding an atom which is covered by

exactly the elements in A. If A satisfies (A1), then LA is a lattice.
(Heitzig and Reinhold, 2000).

A recursive algorithm can be formulated that generates for a given
natural number n ≥ 2 exactly all canonical lattices up to n

elements starting with the two element lattice:
next lattice(integer m, canonical m-lattice L)
begin

if m < n then

for each lattice-antichain A of L do

if LA is a canonical lattice then

next lattice (m + 1, LA)

if m = n then output L
end

Nathan Lawless Generating all modular lattices of a given size



1

0

0

1

2

0

1

2 3

0

1

2

3

0

1

2 3 4

0

1

2

3

4

0

1

2 3

4

0

1

3

2

4

0

1

2

3 4

0

1

2

3

4

0

1

2

4

3

Nathan Lawless Generating all modular lattices of a given size



1

0

0

1

2

0

1

2 3

0

1

2

3

0

1

2 3 4

0

1

2

3

4

0

1

2 3

4

0

1

3

2

4

0

1

2

3 4

0

1

2

3

4

0

1

2

4

3

Nathan Lawless Generating all modular lattices of a given size



1

0

0

1

2

0

1

2 3

0

1

2

3

0

1

2 3 4

0

1

2

3

4

0

1

2 3

4

0

1

3

2

4

0

1

2

3 4

0

1

2

3

4

0

1

2

4

3

Nathan Lawless Generating all modular lattices of a given size



1

0

0

1

2

0

1

2 3

0

1

2

3

0

1

2 3 4

0

1

2

3

4

0

1

2 3

4

0

1

3

2

4

0

1

2

3 4

0

1

2

3

4

0

1

2

4

3

Nathan Lawless Generating all modular lattices of a given size



1

0

0

1

2

0

1

2 3

0

1

2

3

0

1

2 3 4

0

1

2

3

4

0

1

2 3

4

0

1

3

2

4

0

1

2

3 4

0

1

2

3

4

0

1

2

4

3

Nathan Lawless Generating all modular lattices of a given size



Dealing with Isomorphisms

In order to select one isomorphic copy, a weight is defined for
each lattice. If a lattice has the lowest weight among all it’s
permutations, it is considered canonical.

However, this is an expensive check since it requires checking
all permutations for each lattice (with some restrictions).

The algorithm runtime can be improved by introducing a
canonical path extension, introduced by McKay (1998):

We only use one arbitrary representative of each orbit in the
lattice antichains of L.
When LA is generated, we perform a “canonical deletion”. If L
is automorphic to the generated lattice, we consider LA

canonical.

Nathan Lawless Generating all modular lattices of a given size



Counting Finite Lattices: Semimodular Lattices

This algorithm can be modified such that when a lattice of size n
is generated, the algorithm checks if it is (semi)modular.
Since semimodular and modular lattices are a very small fraction of
all lattices, we present some results to reduce the search space of
the algorithm. Here, Levk(L) and Levk−1(L) denote the bottom
and second bottom levels of L respectively.

Semimodular Lattices Theorem: When generating
semimodular lattices, for a lattice L, we only consider
antichains A which satisfy (A1) and all of the following
conditions:
(A2) A ⊆ Levk−1(L) or A ⊆ Levk(L).
(A3) If A ⊆ Levk(L), there are no atoms in Levk−1(L).
(A4) For all x , y ∈ A, x and y have a common cover.

Nathan Lawless Generating all modular lattices of a given size



Counting Finite Lattices: Modular Lattices

Modular Lattices Theorem: When generating modular
lattices, for a lattice L, we only consider antichains A which
satisfy (A1-4) and

(A5) If A ⊆ Levk(L), Levk−1(L) satisfies lower semimodularity
(ie: for all x , y ∈ Levk−1(L), x , y ≺ x ∨y implies x ∧y ≺ x , y)

x ∨ y

x y

x ∨ y

x y
x ∧ y

Nathan Lawless Generating all modular lattices of a given size



Runtime Analysis

Calculation of modular lattices of size n takes approximatelly
5.5 times the time used to generate all modular lattices of size
n − 1.

In order to reach higher numbers, the algorithm was
parallelized using the Message Passing Interface (MPI).

Approximately 50 hours were required to calculate all
modular lattices of size 22 running the algorithm in parallel on
64 CPUs. It is estimated it would have taken 1 month with
the serial version.

Nathan Lawless Generating all modular lattices of a given size



Results

n Lattices Semimod. Latt. Mod. Latt.

1 1 1 1
2 1 1 1
3 1 1 1
4 2 2 2
5 5 4 4
6 15 8 8
7 53 17 16
8 222 38 34
9 1,078 88 72

10 5,994 212 157
11 37,622 530 343
12 262,776 1376 766

13 2,018,305 3,693 1,718
14 16,873,364 10,232 3,899
15 152,233,518 29,231 8,898
16 1,471,613,387 85,906 20,475
17 15,150,569,446 259,291 47,321
18 165,269,824,761 802,308 110,024
19 – 2,540,635 256,791
20 – 8,220,218 601,991
21 – 27,134,483 1,415,768
22 – 91,258,141 3,340,847

Nathan Lawless Generating all modular lattices of a given size



Results

n Lattices Semimod. Latt. Mod. Latt.

1 1 1 1
2 1 1 1
3 1 1 1
4 2 2 2
5 5 4 4
6 15 8 8
7 53 17 16
8 222 38 34
9 1,078 88 72

10 5,994 212 157
11 37,622 530 343
12 262,776 1376 766
13 2,018,305 3,693 1,718
14 16,873,364 10,232 3,899
15 152,233,518 29,231 8,898
16 1,471,613,387 85,906 20,475
17 15,150,569,446 259,291 47,321
18 165,269,824,761 802,308 110,024
19 – 2,540,635 256,791
20 – 8,220,218 601,991
21 – 27,134,483 1,415,768
22 – 91,258,141 3,340,847

Nathan Lawless Generating all modular lattices of a given size



Lower Bound on Modular Lattices

Theorem: The number of modular lattices of size n up to
isomorphism is greater or equal to 2n−3.

Outline of proof: Let L3 be the three element lattice with 0
and 1 as bottom and top respectively, and let n − 1 the last
element added. Consider the following two extensions of an
n-lattice L:
Lα = LA where A = {x ∈ L | x � 0}
Lβ = L{a} for an arbitary a such that a � n − 1

Idea: Each modular lattice L will generate two unique modular
lattices Lα and Lβ.

Nathan Lawless Generating all modular lattices of a given size



Open Question: Upper Bound on Modular Lattices?

Current upper bound for the number of all lattices up to
isomorphism is approximately

6.111344[n
3\2+o(n3\2)] (Kleitman, 1980)

Upper bound for the number of all distributive lattices is

2.39n (Erné, Heitzig and Reinhold, 2002).

Nathan Lawless Generating all modular lattices of a given size



Future Work: Another Approach?

Is it possible to generate modular lattices more efficiently with
a different approach?
Distributive lattices have been counted up to size 49 (Erné,
Heitzig and Reinhold, 2002).
Since the difference between distributive and modular lattices
is that any lattice containing M3 is non-distributive and is
modular, we tried to generate all modular lattices by inserting
points in the M2 (and other Mk) sublattices.
This worked up to size 15, but failed to generate the
projective geometry lattice. When introducing it as a
construction block, it worked up to size 20.
Difficult to prove the algorithm would generate all modular
lattices.

M2 M3 Z3
2

Nathan Lawless Generating all modular lattices of a given size



Future Work: Generating Other Lattices

The algorithm for generating all lattices along with the
implementation of the canonical path construction provides a
tool to generate any type of lattice up to size 17 or 18.

The algorithm can be adapted to other types of lattices.

Some lattices of interest are:
1 Semidistributive lattices.
2 Almost distributive lattices.
3 Two distributive lattices.
4 Selfdual lattices.

Numbers will be added to the On-Line Encyclopedia of Integer
Sequences (OEIS).

Nathan Lawless Generating all modular lattices of a given size



References

1 R. Belohlavek and V. Vychodil, Residuated Lattices of Size ≤
12, Order 27 (2010), 147–161.

2 R. Dedekind, Über die von drei Moduln erzeugte Dualgruppe,
Math. Ann. 53 (1900), 371–403.

3 M. Erné, J. Heitzig and J. Reinhold, On the number of
distributive lattices, Electron. J. Combin. 9 (2002), 23 pp.

4 J. Heitzig and J. Reinhold, Counting Finite Lattices, Algebra
Univers. 48 (2002) 43–53.

5 D. J. Kleitman and K. J. Winston, Combinatorial
mathematics, optimal designs and their applications, Ann.
Discrete Math. 6 (1980), 243249.

6 B. D. McKay, Isomorph-free exhaustive generation, J.
Algorithms 26 (1998) 306–324.

Nathan Lawless Generating all modular lattices of a given size


