Nilpotence and dualizability

Peter Mayr

JKU Linz. Austria

BLAST, August 2013

FUIF Der Wissenschaftsfonds.

Peter Mayr (JKU Linz)

Nilpotence and dualizability

- ∢ ⊒ → BLAST, August 2013 1 / 11

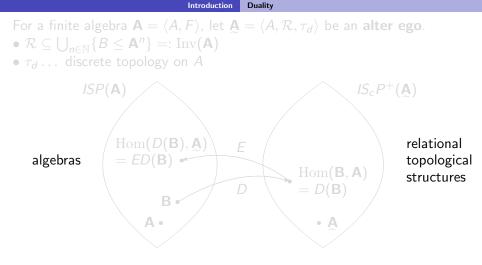
э

What is a natural duality?

General idea (cf. Clark, Davey, 1998):

- A duality is a correspondence between a category of algebras and a category of relational structures with topology.
- **Representation:** Elements of the algebras are represented as continuous, structure preserving maps.
- Classical example: Stone duality between Boolean algebras and Boolean spaces (totally disconnected, compact, Hausdorff)
- Application, e.g., completions of lattices

∃ ► < ∃ ►</p>



A is dualized by \bigotimes if \forall **B** \in *ISP*(**A**):

 $ED(\mathbf{B}) = \{e_b \colon \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \to A, h \mapsto h(b) \mid b \in B\}$

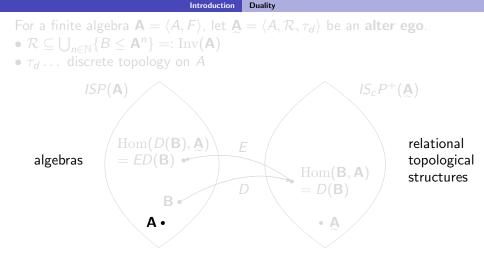
"Every morphism from $D(\mathbf{B})$ to \mathbf{A} is an evaluation."

Peter Mayr (JKU Linz)

Nilpotence and dualizability

3

- 4 同 6 4 日 6 4 日 6



A is dualized by \mathbf{A} if $\forall \mathbf{B} \in ISP(\mathbf{A})$:

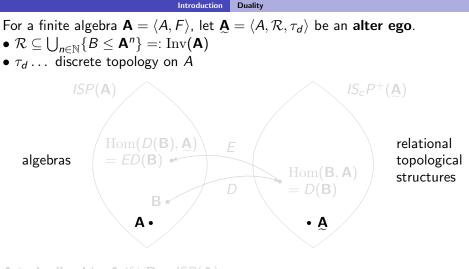
 $ED(\mathbf{B}) = \{e_b \colon \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \to A, h \mapsto h(b) \mid b \in B\}$

"Every morphism from $D(\mathbf{B})$ to \mathbf{A} is an evaluation."

Peter Mayr (JKU Linz)

Nilpotence and dualizability

- 3



A is dualized by \underline{A} if $\forall B \in ISP(A)$:

 $ED(\mathbf{B}) = \{e_b \colon \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \to A, h \mapsto h(b) \mid b \in B\}$

"Every morphism from $D(\mathbf{B})$ to \mathbf{A} is an evaluation."

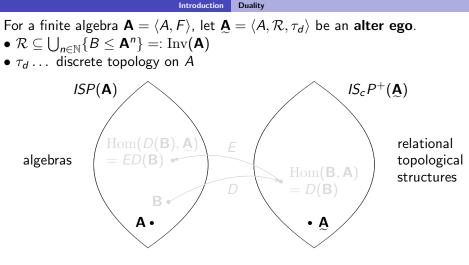
Peter Mayr (JKU Linz)

Nilpotence and dualizability

- 3

• • = • • = •

< A



A is dualized by \bigotimes if \forall **B** \in *ISP*(**A**):

 $ED(\mathbf{B}) = \{e_b \colon \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \to A, h \mapsto h(b) \mid b \in B\}$

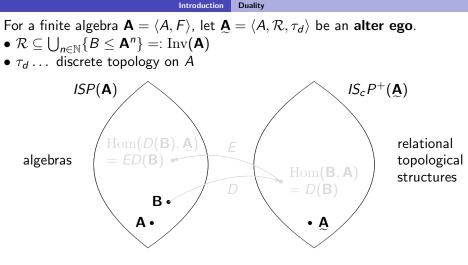
"Every morphism from $D(\mathbf{B})$ to \mathbf{A} is an evaluation."

Peter Mayr (JKU Linz)

Nilpotence and dualizability

3

A B > A B >



A is dualized by $A \in ISP(A)$:

 $ED(\mathbf{B}) = \{e_b \colon \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \to A, h \mapsto h(b) \mid b \in B\}$

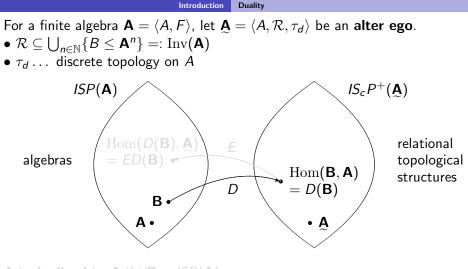
"Every morphism from $D(\mathbf{B})$ to \mathbf{A} is an evaluation."

Peter Mayr (JKU Linz)

Nilpotence and dualizability

3

A B F A B F



A is **dualized** by \bigotimes if \forall **B** \in *ISP*(**A**):

 $ED(\mathbf{B}) = \{e_b \colon \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \to A, h \mapsto h(b) \mid b \in B\}$

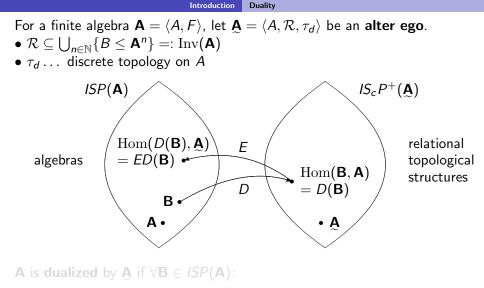
"Every morphism from $D(\mathbf{B})$ to \mathbf{A} is an evaluation."

Peter Mayr (JKU Linz)

Nilpotence and dualizability

3

A B + A B +



 $ED(\mathbf{B}) = \{e_b \colon \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \to A, h \mapsto h(b) \mid b \in B\}$

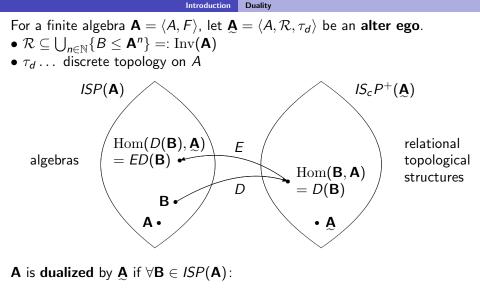
"Every morphism from $D({f B})$ to f A is an evaluation."

Peter Mayr (JKU Linz)

Nilpotence and dualizability

3

A B + A B +



 $ED(\mathbf{B}) = \{e_b : \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \to A, h \mapsto h(b) \mid b \in B\}$

"Every morphism from $D(\mathbf{B})$ to **A** is an evaluation."

- 3

When can **A** be dualized by some \underline{A} ?

A is **not dualizable** iff $\exists \mathbf{B} \leq \mathbf{A}^S$ and a morphism α from $D(\mathbf{B}) \leq \underline{\mathbf{A}}^B$ to $\underline{\mathbf{A}} := \langle A, \operatorname{Inv}(\mathbf{A}), \tau_d \rangle$ that is not an evaluation.

Theorem (Davey, Heindorf, McKenzie, 1995) Let **A**, finite, in a CD variety. Then **A** is dualizable iff **A** has a NU-term.

Problem (Clark, Davey, 1998)

Characterize dualizable algebras in CP varieties (= **Mal'cev algebras**).

Theorem (⇒ Quackenbush, Szabó 2002, ⇐ Nickodemus 2007) A finite group is dualizable iff its Sylow subgroups are abelian.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When can **A** be dualized by some A?

A is **not dualizable** iff $\exists \mathbf{B} \leq \mathbf{A}^S$ and a morphism α from $D(\mathbf{B}) \leq \underline{\mathbf{A}}^B$ to $\underline{\mathbf{A}} := \langle A, \operatorname{Inv}(\mathbf{A}), \tau_d \rangle$ that is not an evaluation.

Theorem (Davey, Heindorf, McKenzie, 1995) Let **A**, finite, in a CD variety. Then **A** is dualizable iff **A** has a NU-term.

Problem (Clark, Davey, 1998)

Characterize dualizable algebras in CP varieties (= **Mal'cev algebras**).

Theorem (⇒ Quackenbush, Szabó 2002, ⇐ Nickodemus 2007) A finite group is dualizable iff its Sylow subgroups are abelian.

イロト イポト イヨト イヨト 二日

When can **A** be dualized by some A?

A is **not dualizable** iff $\exists \mathbf{B} \leq \mathbf{A}^S$ and a morphism α from $D(\mathbf{B}) \leq \underline{\mathbf{A}}^B$ to $\underline{\mathbf{A}} := \langle A, \operatorname{Inv}(\mathbf{A}), \tau_d \rangle$ that is not an evaluation.

Theorem (Davey, Heindorf, McKenzie, 1995) Let **A**, finite, in a CD variety. Then **A** is dualizable iff **A** has a NU-term.

Problem (Clark, Davey, 1998)

Characterize dualizable algebras in CP varieties (= Mal'cev algebras).

Theorem (⇒ Quackenbush, Szabó 2002, ⇐ Nickodemus 2007) A finite group is dualizable iff its Sylow subgroups are abelian.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Nilpotence

Nilpotence and beyond

There is a generalization of commutators, abelianess, nilpotence, ... from groups to algebras in CM varieties (Freese, McKenzie, 1987). A Mal'cev algebra **A** is **supernilpotent** if $[1_A, ..., 1_A] = 0_A$ for some higher commutator (Bulatov, 2001; Aichinger, Mudrinski, 2010).

Lemma (cf. Freese, McKenzie, 1987, Kearnes 1999)

For a finite nilpotent Mal'cev algebra **A** TFAE:

- **A** is supernilpotent.
- A is polynomially equivalent to a direct product of algebras of prime power order and finite type.
- ③ ∃k ∈ N: every term operation on A is a "sum of at most k-ary commutator operations".

Examples of supernilpotent algebras

Finite nilpotent groups, nilpotent rings, $\langle \mathbb{Z}_4, +, 2x_1 \dots x_k \rangle$...

Nilpotence

Nilpotence and beyond

There is a generalization of commutators, abelianess, nilpotence, ... from groups to algebras in CM varieties (Freese, McKenzie, 1987). A Mal'cev algebra **A** is **supernilpotent** if $[1_A, \ldots, 1_A] = 0_A$ for some higher commutator (Bulatov, 2001; Aichinger, Mudrinski, 2010).

Lemma (cf. Freese, McKenzie, 1987, Kearnes 1999)

For a finite nilpotent Mal'cev algebra **A** TFAE:

- A is supernilpotent.
- A is polynomially equivalent to a direct product of algebras of prime power order and finite type.
- **(**) $\exists k \in \mathbb{N}$: every term operation on **A** is a "sum of at most k-ary commutator operations".

Examples of supernilpotent algebras

Finite nilpotent groups, nilpotent rings, $\langle \mathbb{Z}_4, +, 2x_1 \dots x_k \rangle \dots$

Our main result

Theorem (Bentz, M, submitted 2012)

Finite non-abelian supernilpotent Mal'cev algebras are (inherently) non-dualizable.

Corollary

The following finite algebras are not dualizable:

- I groups with nonabelian Sylow subgroups (Quackenbush, Szabó, 2002)
- In a substant of the set of
- Inon-abelian loops with nilpotent multiplication group

3

イロト イポト イヨト イヨト

Our main result

Theorem (Bentz, M, submitted 2012)

Finite non-abelian supernilpotent Mal'cev algebras are (inherently) non-dualizable.

Corollary

The following finite algebras are not dualizable:

- **(**groups with nonabelian Sylow subgroups (Quackenbush, Szabó, 2002)
- **2** rings with nilpotent subring S and $S^2 \neq 0$ (Szabó, 1999; Clark, Idziak, Sabourin, Szabó, Willard, 2001)
- Inon-abelian loops with nilpotent multiplication group

・ロト ・同ト ・ヨト ・ヨト

How to show that **A** is not dualizable

The ghost element method

Find $\mathbf{B} \leq \mathbf{A}^{\mathcal{S}}$ and $\alpha \colon \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \to A$ such that

1 α is continuous,

 α depends only on a finite subset of indices of ${\it B},$

- Inv(A)-preserving,
 on any finite set of homomorphisms, α is an evaluation at some b ∈ B
- ont an evaluation at any b ∈ B. the tuple (α(π_s))_{s∈S} is not in B.

Then **A** is not dualizable.

Proof idea for our Theorem

- **1** Supernilpotence of **A** yields a nice representation of term operations.
- ② This allows to construct B ≤ A^ℤ and α: Hom(B, A) → A with properties 1,2,3.

Peter Mayr (JKU Linz)

Nilpotence and dualizability

BLAST, August 2013 7 / 11

How to show that $\boldsymbol{\mathsf{A}}$ is not dualizable

The ghost element method

Find $\mathbf{B} \leq \mathbf{A}^{\mathcal{S}}$ and $\alpha \colon \operatorname{Hom}(\mathbf{B},\mathbf{A}) \to A$ such that

- α is continuous, α depends only on a finite subset of indices of *B*,
- Inv(A)-preserving,
 on any finite set of homomorphisms, α is an evaluation at some b ∈ B
- ont an evaluation at any b ∈ B. the tuple (α(π_s))_{s∈S} is not in B.

Then **A** is not dualizable.

Proof idea for our Theorem

- **O** Supernilpotence of **A** yields a nice representation of term operations.
- ② This allows to construct $\mathbf{B} \leq \mathbf{A}^{\mathbb{Z}}$ and α : Hom(\mathbf{B}, \mathbf{A}) → A with properties 1,2,3.

Nilpotence alone is not an obstacle

Theorem (Bentz, M, submitted 2012)

$$\begin{split} \mathbf{A} &:= \langle \mathbb{Z}_4, +, 1, \{ 2x_1 \cdots x_k \mid k \in \mathbb{N} \} \rangle \text{ is nilpotent and dualized by } \\ \mathbf{A} &:= \langle \mathbb{Z}_4, \{ R \leq \mathbf{A}^4 \}, \tau_d \rangle. \end{split}$$

Fun fact

All reducts

$$\langle \mathbb{Z}_4, +, 2x_1x_2, \dots, 2x_1 \cdots x_k \rangle$$
 $(k \in \mathbb{N})$

of finite type are supernilpotent, hence non-dualizable.

A B + A B +

 $\operatorname{Clo}_{\operatorname{cad}}(\mathbf{A}) := \{ f |_D \colon f \in \operatorname{Clo}(\mathbf{A}), D \text{ is solution set of term identities on } \mathbf{A} \}$

 cad

For $D\subseteq A^k$, a partial op f:D o A ${f preserves}$ a relation $R\subseteq A^n$ if

 $\forall r_1, \ldots, r_k \in R : f(r_1, \ldots, r_k) \in R$ whenever defined.

Lemma (Davey, Pitkethly, Willard, 2012)

Assume **A** and $\mathcal{R} \subseteq \text{Inv}(\mathbf{A})$ are **finite** such that $\text{Clo}_{cad}(\mathbf{A})$ is the set of all \mathcal{R} -preserving operations with cad domains over **A**. Then **A** is dualized by $\mathbf{A} := \langle A, \mathcal{R}, \tau_d \rangle$.

Follows from Third Duality Theorem and Duality Compactness.

Duality via partial clones

Partial operations on "conjunct-atomic definable" domains $Clo(\mathbf{A}) \dots$ term operations on \mathbf{A} $Clo_{cad}(\mathbf{A}) := \{f|_D : f \in Clo(\mathbf{A}), D \text{ is solution set of term identities on } \mathbf{A}\}$ For $D \subseteq A^k$, a partial op $f : D \rightarrow A$ preserves a relation $R \subseteq A^n$ if $\forall r_1, \dots, r_k \in R : f(r_1, \dots, r_k) \in R$ whenever defined.

Lemma (Davey, Pitkethly, Willard, 2012)

Assume **A** and $\mathcal{R} \subseteq \text{Inv}(\mathbf{A})$ are **finite** such that $\text{Clo}_{\text{cad}}(\mathbf{A})$ is the set of all \mathcal{R} -preserving operations with cad domains over **A**. Then **A** is dualized by $\underline{\mathbf{A}} := \langle A, \mathcal{R}, \tau_d \rangle$.

Follows from Third Duality Theorem and Duality Compactness.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Duality via partial clones

Partial operations on "conjunct-atomic definable" domains $Clo(\mathbf{A}) \dots$ term operations on \mathbf{A} $Clo_{cad}(\mathbf{A}) := \{f|_D : f \in Clo(\mathbf{A}), D \text{ is solution set of term identities on } \mathbf{A}\}$ For $D \subseteq A^k$, a partial op $f : D \to A$ preserves a relation $R \subseteq A^n$ if $\forall r_1, \dots, r_k \in R : f(r_1, \dots, r_k) \in R$ whenever defined.

Lemma (Davey, Pitkethly, Willard, 2012)

Assume **A** and $\mathcal{R} \subseteq \text{Inv}(\mathbf{A})$ are **finite** such that $\text{Clo}_{cad}(\mathbf{A})$ is the set of all \mathcal{R} -preserving operations with cad domains over **A**. Then **A** is dualized by $\mathbf{A} := \langle A, \mathcal{R}, \tau_d \rangle$.

Follows from Third Duality Theorem and Duality Compactness.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

 $A := \langle \mathbb{Z}_4, +, 1, \{ 2x_1 \cdots x_k \mid k \in \mathbb{N} \} \rangle$ is dualizable

Proof idea:

- **(**) Solution sets $D \subseteq \mathbb{Z}_4^k$ of term identities can be described explicitly.
- Clo_{cad}(A) is determined by the unary term operations and the 4-ary commutator relations just like Clo(A).

Problem

Is every finite abelian Mal'cev algebra dualizable?

Finite ring modules are dualizable (Kearnes, Szendrei, announced).

Problem

Let **A** be a finite Mal'cev algebra with a non-abelian supernilpotent congruence α , i.e., $[\alpha, \ldots, \alpha] = 0$. Is **A** non-dualizable?

Yes, if **A** is nilpotent (Bentz, M).

Supernilpotence is not the only obstacle for dualizability

 $\langle S_3, \cdot, all \text{ constants} \rangle$ is not dualizable (Idziak, unpublished) but all its (super)nilpotent congruences are abelian.

Wild guess

A finite nilpotent **A** is dualizable iff all supernilpotent algebras in $HSP(\mathbf{A})$ are abelian.

Problem

Is every finite abelian Mal'cev algebra dualizable?

Finite ring modules are dualizable (Kearnes, Szendrei, announced).

Problem

Let **A** be a finite Mal'cev algebra with a non-abelian supernilpotent congruence α , i.e., $[\alpha, \ldots, \alpha] = 0$. Is **A** non-dualizable?

Yes, if **A** is nilpotent (Bentz, M).

Supernilpotence is not the only obstacle for dualizability

 $\langle S_3, \cdot, all \text{ constants} \rangle$ is not dualizable (Idziak, unpublished) but all its (super)nilpotent congruences are abelian.

Wild guess

A finite nilpotent **A** is dualizable iff all supernilpotent algebras in $HSP(\mathbf{A})$ are abelian.

Problem

Is every finite abelian Mal'cev algebra dualizable?

Finite ring modules are dualizable (Kearnes, Szendrei, announced).

Problem

Let **A** be a finite Mal'cev algebra with a non-abelian supernilpotent congruence α , i.e., $[\alpha, \ldots, \alpha] = 0$. Is **A** non-dualizable?

Yes, if **A** is nilpotent (Bentz, M).

Supernilpotence is not the only obstacle for dualizability

 $\langle S_3, \cdot, all \text{ constants} \rangle$ is not dualizable (Idziak, unpublished) but all its (super)nilpotent congruences are abelian.

Wild guess

A finite nilpotent **A** is dualizable iff all supernilpotent algebras in $HSP(\mathbf{A})$ are abelian.

Problem

Is every finite abelian Mal'cev algebra dualizable?

Finite ring modules are dualizable (Kearnes, Szendrei, announced).

Problem

Let **A** be a finite Mal'cev algebra with a non-abelian supernilpotent congruence α , i.e., $[\alpha, \ldots, \alpha] = 0$. Is **A** non-dualizable?

Yes, if **A** is nilpotent (Bentz, M).

Supernilpotence is not the only obstacle for dualizability

 $\langle S_3, \cdot, all \text{ constants} \rangle$ is not dualizable (Idziak, unpublished) but all its (super)nilpotent congruences are abelian.

Wild guess

A finite nilpotent **A** is dualizable iff all supernilpotent algebras in $HSP(\mathbf{A})$ are abelian.

Peter Mayr (JKU Linz)