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CONTENTS OF THIS TALK

1. Graphs = Kripke frames.
2. Completeness for the basic hybrid logic H.
3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties of
graphs .
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WHY SYMMETRIC FRAMES?

= My research history =

Quantum Logic = a logic of quantum mechanics

\
Orthologic /orthomodular logic

4
Modal logic KTB and its extension

- complete for reflexive and symmetric frames.
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KRIPKE FRAMES AND GRAPHS

Undirected Graphs = Symmetric Kripke frames

V-0

Undirected graph Symmetric frame
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KRIPKE FRAMES AND GRAPHS

Undirected Graphs = Symmetric Kripke frames

Undirected graph Symmetric frame

Every point (node) in an undirected graph must be treated
as an irreflexive point!
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TO CHARACTERIZE IRREFLEXIVITY

Proposition

There is NO formula in propositional modal logic that
characterizes the class of irreflexive frames.

—> We have to enrich our language.

Employ a kind of hybrid language (NOMINALS)
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A HYBRID LANGUAGE

> 2 sorts of variables:
e &:={p,q,r,...} - the set of prop. variables
o O:={ijk,...} - the set of nominals
where ® N Q = 0.

Nominals are used to distinguish points
(states) in a frame from one another.

> Our language L (the set of formulas) consists of
Az=p|i| L |-A| ANB | OA

-+ No satisfaction operator (@;)
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NORMAL HYBRID LOGIC(1)

A normal hybrid logic L over L is a set of formulas in £
that contains:

(1) All classical tautologies

(2) 8(p—q) — (Bp—Bg)

(3) (¢ Ap) — O"(i — p) for all n € w: (nominality axiom)
and closed under the following rules:

(4) Modus Ponens
A, A— B

(5) Necessitation

Yutaka Miyazaki Graph Theory and Modal Logic



NORMAL HYBRID LOGIC(2)

(6) Sorted substitution

A A
A[B/p] , Alj/i]

p : prop. variable, 7, j: nominals
(7) Naming
i— A
A

i: not occurring in A
(8) Pasting
(tNO(GANA) — B
(iNOA) — B

j # 1, jmot occurring in A or B.
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NORMAL HYBRID LOGIC(3)

H: the smallest normal hybrid logic over £

ForI" C L,

H @ I': the smallest normal hybrid extension containing I'
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SEMANTICS

F := (W, R): a (Kripke) frame

M := (F,V): amodel,
where, V : ® U Q) — 2" such that:

For p € ®, V(p): a subset of W,
for i € 2, V(i): a singleton of W.

Interpretation of a nominal:
(M, a) =i if and only if V(i) = {a}

In this sense, i is a name for the point a in this model 91!
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SOUNDNESS FOR H

For a frame F,

FEA <def= VWonF,VaeW, ((F,V)a) kA
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SOUNDNESS FOR H

For a frame F,

FEA <def= VWonF,VaeW, ((F,V)a) kA

Theorem (Soundness for the logic H)

For Ae L, A e H implies F = A for any frame F.
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COMPLETENESS FOR H

ForT'C L, Ae L,

H:THA
&< def= 3By, By, ..., B, € T(HF (BiAByA---AB,) — A)
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COMPLETENESS FOR H

ForT'C L, Ae L,

H:THA
&< def= 3By, By, ..., B, € T(HF (BiAByA---AB,) — A)

Theorem (Strong completeness for the logic H)
ForT' C L, A€ L, suppose that H: T't/ A.

Then there exists a model M and a point a such that:
(1) (M, a) =B forall BeT,
(2) (Ma) A
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FMP AND DECIDABILITY FOR H

(1) H admits filtration, and so, it has the finite model
property.
(2) H is decidable.
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AXIOM FOR IRREFLEXIVITY

Proposition

For any frame F = (W, R),
FlEi— O~ ifand only if FE Vo € W (Not(zRz)).
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AXIOM FOR IRREFLEXIVITY

Proposition

For any frame F = (W, R),
FlEi— O~ ifand only if FE Vo € W (Not(zRz)).

(=) Suppose that there is a point a € W s.t. aRa. Define
a valuation V as: V(i) := {a}. Then a £ i — O

(«<:) Suppose F [~ ¢ — O—i. Then, ther exists a € W, s.t.
a =i, but a [~ O—i, which is equivalent to a = <i. The
latter means that there is b € W s.t. aRb and b |= . Then,
V(i) = {a} = {b}. Thus a = b and that aRa O

y
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THE LOGIC G FOR UNDIRECTED GRAPHS

G:=Ho (p—0O0p) ® (i — Oi)
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THE LOGIC G FOR UNDIRECTED GRAPHS

G:=Ho (p—0O0p) ® (i — Oi)

(1) For any frame F, F = (p — OCp) A (1 — O—i) if and
only if F is an undirected graph.

(2) The canonical frame for G is also irreflexive and

symmetric.
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THE LOGIC G FOR UNDIRECTED GRAPHS

G:=Ho (p—0O0p) ® (i — Oi)

Lemma

(1) For any frame F, F = (p — OCp) A (1 — O—i) if and
only if F is an undirected graph.

(2) The canonical frame for G is also irreflexive and

symmetric.
The logic G is strong complete for the class of all
undirected graphs.
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THE LOGIC G FOR UNDIRECTED GRAPHS

G:=Ho (p—0O0p) ® (i — Oi)

Lemma

(1) For any frame F, F = (p — OCp) A (1 — O—i) if and
only if F is an undirected graph.

(2) The canonical frame for G is also irreflexive and

symmetric.
The logic G is strong complete for the class of all
undirected graphs.

Question: Does G admit filtration?
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FORMULAS CHARACTERING SOME GRAPH PROPERTIES

F: a graph (irreflexive and symmetric frame)
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FORMULAS CHARACTERING SOME GRAPH PROPERTIES

F: a graph (irreflexive and symmetric frame)

(1) Degree of a graph

Every point in F has at most n points that connects to
it iff F g Alt,

Alt, :==0p;VO(p1 — p2) V- -VO(p1 A+ - App — Pps1)
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FORMULAS CHARACTERING SOME GRAPH PROPERTIES

F: a graph (irreflexive and symmetric frame)

(1) Degree of a graph

Every point in F has at most n points that connects to
it iff F g Alt,

Alt, :==0p;VO(p1 — p2) V- -VO(p1 A+ - App — Pps1)

(2) Diameter of a graph
The diameter of F is less than n  iff F = —p,.

Y1 = P1-
Ont1 = DPnt1 A "D A== Apr A Oy,
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FORMULAS CHARACTERING SOME GRAPH PROPERTIES

(3) Hamilton cycles
F: a graph that has n points.
F has a Hamilton cycle iff F sat ¢, so
F does NOT have a Hamilton cycle iff F = —,.

Up =01 AO(aa ANO(--- O, A Oay) -+ ), where
Op =1 AN lg Ao ANt A A iy,
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FORMULAS CHARACTERING SOME GRAPH PROPERTIES

(3) Hamilton cycles
F: a graph that has n points.
F has a Hamilton cycle iff F sat ¢, so
F does NOT have a Hamilton cycle iff F = —,.

Up =01 AO(aa ANO(+ - O0, A Oay) -+ ), where
Ok =g AN lg A Nig Ao A\ iy,

(Q:) How to characterize having Euler cycles?
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FORMULAS CHARACTERING SOME GRAPH PROPERTIES

(4) Coloring
F: a graph whose diameter is at most n.

F is k-colorable iff F sat color(k), so

F is NOT k-colorable iff F |= —color(k)
k k

color(k) := D(”)(\/ ce N /\(Ce — O-cy)),

=1 =1
each ¢y is a prop. variable representing a color.
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FORMULAS CHARACTERING SOME GRAPH PROPERTIES

(4) Coloring
F: a graph whose diameter is at most n.

F is k-colorable iff F sat color(k), so

F is NOT k-colorable iff F |= —color(k)
k k

color(k) := D(”)(\/ ce N /\(Ce — O-cy)),

=1 =1
each ¢y is a prop. variable representing a color.

(Q:) How to characterize being planar?
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FUTURE STUDY

(1) What kind of graph properies are definable over the
logic G?
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FUTURE STUDY

(1) What kind of graph properies are definable over the
logic G?

(2) Can we prove theorems from graph theory by
constructing a fromal proof?
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