Graph Theory and Modal Logic

Yutaka Miyazaki
Osaka University of Economics and Law (OUEL)

Aug. 5, 2013

BLAST 2013 at Chapman University
Contents of this Talk

1. Graphs = Kripke frames
2. Completeness for the basic hybrid logic H
3. The hybrid logic G for all graphs
4. Hybrid formulas characterizing some properties of graphs
1. Graphs = Kripke frames.
Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

1. **Graphs** = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.
1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties of graphs.
Why symmetric frames?

= My research history =
Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics
Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

\[\downarrow\]

Orthologic / orthomodular logic
Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

↓

Orthologic /orthomodular logic

↓

Modal logic KTB and its extension

⋅⋅⋅ complete for reflexive and symmetric frames.
Undirected Graphs = Symmetric Kripke frames
Undirected Graphs = Symmetric Kripke frames

Every point (node) in an undirected graph must be treated as an **irreflexive point**!
To characterize irreflexivity

Proposition

There is NO formula in propositional modal logic that characterizes the class of irreflexive frames. We have to enrich our language. Employ a kind of hybrid language (nominals)
To characterize irreflexivity

Proposition

There is **NO formula** in propositional modal logic that characterizes the class of **irreflexive frames**.
To characterize irreflexivity

Proposition

There is NO formula in propositional modal logic that characterizes the class of irreflexive frames.

\[\rightarrow \text{We have to enrich our language.} \]
Proposition

There is NO formula in propositional modal logic that characterizes the class of irreflexive frames.

\[\rightarrow\] We have to enrich our language.

Employ a kind of hybrid language (NOMINALS)
A Hybrid Language

› 2 sorts of variables:

• $\Phi := \{p, q, r, \ldots\}$ · · · the set of prop. variables

• $\Omega := \{i, j, k, \ldots\}$ · · · the set of nominals

where $\Phi \cap \Omega = \emptyset$.

Nominals are used to distinguish points (states) in a frame from one another.

› Our language \mathcal{L} (the set of formulas) consists of

$A ::= p \mid i \mid \bot \mid \neg A \mid A \land B \mid \Box A$

… No satisfaction operator ($@i$)
A normal hybrid logic \mathbf{L} over \mathcal{L} is a set of formulas in \mathcal{L} that contains:

1. All classical tautologies
2. $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$
3. $(i \land p) \rightarrow \Box^n (i \rightarrow p)$ for all $n \in \omega$: (nominality axiom)

and closed under the following rules:

4. Modus Ponens

 $$
 \begin{array}{c}
 A, A \rightarrow B \\
 \hline
 B
 \end{array}
 $$

5. Necessitation

 $$
 \begin{array}{c}
 A \\
 \hline
 \Box A
 \end{array}
 $$
Normal hybrid logic(2)

(6) Sorted substitution

\[
\frac{A}{A[B/p]} , \frac{A}{A[j/i]}
\]

\(p: \) prop. variable, \(i, j: \) nominals

(7) Naming

\[
\frac{i \rightarrow A}{A}
\]

\(i: \) not occurring in \(A\)

(8) Pasting

\[
\frac{(i \land \Diamond (j \land A)) \rightarrow B}{(i \land \Diamond A) \rightarrow B}
\]

\(j \neq i, \) \(j: \) not occurring in \(A\) or \(B.\)
Normal hybrid logic

\(H \): the smallest normal hybrid logic over \(\mathcal{L} \)

For \(\Gamma \subseteq \mathcal{L} \),

\(H \oplus \Gamma \): the smallest normal hybrid extension containing \(\Gamma \)
Semantics

\(\mathcal{F} := \langle W, R \rangle \): a (Kripke) frame

\(\mathcal{M} := \langle \mathcal{F}, V \rangle \): a model,

where, \(V : \Phi \cup \Omega \rightarrow 2^W \) such that:

For \(p \in \Phi \), \(V(p) \): a subset of \(W \),
for \(i \in \Omega \), \(V(i) \): a \textit{singleton} of \(W \).

Interpretation of a nominal:

\((\mathcal{M}, a) \models i \) if and only if \(V(i) = \{a\} \)

In this sense, \(i \) is a \textit{name} for the point \(a \) in this model \(\mathcal{M} \)!
Soundness for H

For a frame \mathcal{F},

$$\mathcal{F} \models A \iff \text{def} \Rightarrow \forall V \text{ on } \mathcal{F}, \forall a \in W, (\langle \mathcal{F}, V \rangle, a) \models A$$
For a frame \mathcal{F},

$$\mathcal{F} \models A \iff \text{def} \Rightarrow \forall V \text{ on } \mathcal{F}, \forall a \in W, ((\langle \mathcal{F}, V \rangle, a) \models A)$$

Theorem (Soundness for the logic \textbf{H})

*For $A \in \mathcal{L}$, $A \in \textbf{H}$ implies $\mathcal{F} \models A$ for any frame \mathcal{F}.***
Completeness for H

For $\Gamma \subseteq L$, $A \in L$, $H : \Gamma \vdash A$

\iff def $\Rightarrow \exists B_1, B_2, \ldots, B_n \in \Gamma (H \vdash (B_1 \land B_2 \land \cdots \land B_n) \rightarrow A)$
For $\Gamma \subseteq \mathcal{L}$, $A \in \mathcal{L}$,

$$\mathbf{H} : \Gamma \vdash A$$

\iff def $\Rightarrow \exists B_1, B_2, \ldots, B_n \in \Gamma (\mathbf{H} \vdash (B_1 \land B_2 \land \cdots \land B_n) \rightarrow A)$

Theorem (Strong completeness for the logic \mathbf{H})

For $\Gamma \subseteq \mathcal{L}$, $A \in \mathcal{L}$, suppose that $\mathbf{H} : \Gamma \nvdash A$.

Then there exists a model \mathfrak{M} and a point a such that:

1. $(\mathfrak{M}, a) \models B$ for all $B \in \Gamma$,
2. $(\mathfrak{M}, a) \nvdash A$
Theorem

(1) H admits filtration, and so, it has the finite model property.

(2) H is decidable.
Axiom for Irreflexivity

Proposition

For any frame $\mathcal{F} = \langle W, R \rangle$, $\mathcal{F} \models i \rightarrow \lozenge \neg i$ if and only if $\mathcal{F} \models \forall x \in W (\text{Not}(xRx))$.
Axiom for Irreflexivity

Proposition

For any frame $\mathcal{F} = \langle W, R \rangle$, $\mathcal{F} \models i \rightarrow \Box \neg i$ if and only if $\mathcal{F} \models \forall x \in W (\text{Not}(xRx))$.

Proof.

$(\Rightarrow:) \text{ Suppose that there is a point } a \in W \text{ s.t. } aRa. \text{ Define a valuation } V \text{ as: } V(i) := \{a\}. \text{ Then } a \not\models i \rightarrow \Box \neg i$

$(\Leftarrow:) \text{ Suppose } \mathcal{F} \not\models i \rightarrow \Box \neg i. \text{ Then, there exists } a \in W, \text{ s.t. } a \models i, \text{ but } a \not\models \Box \neg i, \text{ which is equivalent to } a \models \Diamond i. \text{ The latter means that there is } b \in W \text{ s.t. } aRb \text{ and } b \models i. \text{ Then, } V(i) = \{a\} = \{b\}. \text{ Thus } a = b \text{ and that } aRa \square$
The logic G for undirected graphs

$$G := H \oplus (p \rightarrow \Box \Diamond p) \oplus (i \rightarrow \Box \neg i)$$
The logic G for undirected graphs

$G := H \oplus (p \to \Box \Diamond p) \oplus (i \to \Box \neg i)

Lemma

(1) For any frame \mathcal{F}, $\mathcal{F} \models (p \to \Box \Diamond p) \land (i \to \Box \neg i)$ if and only if \mathcal{F} is an undirected graph.

(2) The canonical frame for G is also irreflexive and symmetric.
The logic G for undirected graphs

$$G := H \oplus (p \rightarrow \Box \Diamond p) \oplus (i \rightarrow \Box \neg i)$$

Lemma

1. For any frame \mathcal{F}, $\mathcal{F} \models (p \rightarrow \Box \Diamond p) \land (i \rightarrow \Box \neg i)$ if and only if \mathcal{F} is an undirected graph.
2. The canonical frame for G is also irreflexive and symmetric.

Theorem

The logic G is strong complete for the class of all undirected graphs.
The logic G for undirected graphs

$$G := H \oplus (p \rightarrow \square \diamond p) \oplus (i \rightarrow \square \neg i)$$

Lemma

1. For any frame \mathcal{F}, $\mathcal{F} \models (p \rightarrow \square \diamond p) \land (i \rightarrow \square \neg i)$ if and only if \mathcal{F} is an undirected graph.
2. The canonical frame for G is also irreflexive and symmetric.

Theorem

The logic G is strong complete for the class of all undirected graphs.

Question: Does G admit filtration?
Formulas charactering some graph properties

\(\mathcal{F} \): a graph (irreflexive and symmetric frame)
\(\mathcal{F} \): a graph (irreflexive and symmetric frame)

(1) Degree of a graph
Every point in \(\mathcal{F} \) has at most \(n \) points that connects to it iff \(\mathcal{F} \models \text{Alt}_n \)

\[
\text{Alt}_n := \Box p_1 \lor \Box(p_1 \rightarrow p_2) \lor \cdots \lor \Box(p_1 \land \cdots \land p_n \rightarrow p_{n+1})
\]
\mathcal{F}: a graph (irreflexive and symmetric frame)

(1) Degree of a graph
Every point in \mathcal{F} has at most n points that connects to it iff $\mathcal{F} \models \text{Alt}_n$

\[
\text{Alt}_n := \Box p_1 \lor \Box(p_1 \rightarrow p_2) \lor \cdots \lor \Box(p_1 \land \cdots \land p_n \rightarrow p_{n+1})
\]

(2) Diameter of a graph
The diameter of \mathcal{F} is less than n iff $\mathcal{F} \models \neg \varphi_n$.

\[
\begin{cases}
\varphi_1 := p_1. \\
\varphi_{n+1} := p_{n+1} \land \neg p_n \land \cdots \land \neg p_1 \land \Diamond \neg \varphi_n.
\end{cases}
\]
(3) Hamilton cycles
\(\mathcal{F} \): a graph that has \(n \) points.
\(\mathcal{F} \) has a Hamilton cycle if and only if \(\mathcal{F} \) sat \(\psi_n \), so
\(\mathcal{F} \) does NOT have a Hamilton cycle if and only if \(\mathcal{F} \models \neg \psi_n \).

\[
\psi_n := \sigma_1 \land \Diamond (\sigma_2 \land \Diamond (\cdots \Diamond (\sigma_n \land \Diamond \sigma_1) \cdots)), \quad \text{where} \\
\sigma_k := \neg i_1 \land \neg i_2 \land \cdots \land i_k \land \cdots \land \neg i_n
\]
(3) Hamilton cycles
\[\mathcal{F}: \text{a graph that has } n \text{ points.} \]
\[\mathcal{F} \text{ has a Hamilton cycle iff } \mathcal{F} \text{ sat } \psi_n, \text{ so} \]
\[\mathcal{F} \text{ does NOT have a Hamilton cycle iff } \mathcal{F} \models \neg \psi_n. \]
\[\psi_n := \sigma_1 \land \Diamond (\sigma_2 \land \Diamond (\cdots \Diamond (\sigma_n \land \Diamond \sigma_1) \cdots)), \text{ where} \]
\[\sigma_k := \neg i_1 \land \neg i_2 \land \cdots \land i_k \land \cdots \land \neg i_n \]

(Q:) How to characterize having Euler cycles?
(4) Coloring

\mathcal{F}: a graph whose diameter is at most n.

\mathcal{F} is k-colorable iff $\mathcal{F} \text{ sat } \text{color}(k)$, so
\mathcal{F} is NOT k-colorable iff $\mathcal{F} \models \neg \text{color}(k)$

\[
\text{color}(k) := \Box^{(n)} \left(\bigvee_{\ell=1}^{k} c_{\ell} \land \bigwedge_{\ell=1}^{k} (c_{\ell} \rightarrow \Box \neg c_{\ell}) \right),
\]

each c_{ℓ} is a prop. variable representing a color.
(4) Coloring
\(\mathcal{F} \): a graph whose diameter is at most \(n \).

\(\mathcal{F} \) is \(k \)-colorable iff \(\mathcal{F} \) \textbf{sat} \(\text{color}(k) \), so
\(\mathcal{F} \) is NOT \(k \)-colorable iff \(\mathcal{F} \models \neg \text{color}(k) \)

\[
\text{color}(k) := \Box^{(n)} \left(\bigvee_{\ell=1}^k c_\ell \land \bigwedge_{\ell=1}^k (c_\ell \to \Box \neg c_\ell) \right),
\]
each \(c_\ell \) is a prop. variable representing a color.

(Q:) How to characterize being planar?
Future Study

(1) What kind of graph properties are definable over the logic G?
Future Study

(1) What kind of graph properties are definable over the logic G?

(2) Can we prove theorems from graph theory by constructing a formal proof?