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Disclaimers

There’s no C in BLAST!

No Category theory as such in these talks.
Shall use the language of category theory but little more:
no monads, no coalgebras, no finitely presentable algebraic
categories, . . ..
Perspective on duality theory comes from Algebra.
Almost all algebras considered will be lattice-based or
semilattice-based. (So a big part of the duality story is
omitted altogether.)

Topology will generally not be pointfree Topology, though
frames do make an appearance in Part II.

SO: there’s no Elephant in this room!
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Outline: Part I

The framework: Stone duality and Priestley duality as
prototype examples

Dualities for finitely generated lattice-based quasivarieties

From quasivarieties to varieties: multisorted dualities
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From algebras to structures
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Marshall Stone’s legacy

A cardinal principle of modern mathematical research may be
stated as a maxim: “One must always topologize.”

Marshall Stone, 1938)
++++++++++++++++++++++++++++++++++10/24/2006 05:54 PMPoster of Stone
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Marshall Stone

lived from 1903 to 1989
Stone is best known for the Stone-Weierstrass theorem on
uniform approximation of continuous functions by
polynomials.

Find out more at:
http://www-history.mcs.st-andrews.ac.uk/history/
Mathematicians/Stone.html
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But is topology the whole story?
Or the ‘right’ story?

Stone’s duality for the variety B of Boolean algebras uses the
dual category of Boolean spaces—purely topological.

Stone’s duality for the variety D of (bounded) distributive
lattices in terms of spectral spaces again uses a purely
topological dual category—the dual objects are T0-spaces.

Was Stone right ‘always to topologize’? YES!

What did his approach conceal? MUCH!
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What’s special algebraically about B and D?

• B = ISP(2), where 2 is the 2-element algebra in B.

• D = ISP(2), where 2 is the 2-element algebra in D.



What’s special about B and D?
• Boolean algebras: B = ISP(2), where 2 is the 2-element

algebra in B.
Boolean spaces: S = IScP+(2∼T), where 2∼T = 〈{0, 1};T〉;
here T denotes the discrete topology.

• Bounded distributive lattices: D = ISP(2), where 2 is the
2-element algebra in D.

Priestley spaces: PT = IScP+(2∼T), where
2∼T = 〈{0, 1};6,T〉, where 6 is the usual order on {0, 1} and
T is the discrete topology.

Priestley spaces are of the form 〈X;6,T〉 where

• 〈X;T〉 is compact Hausdorff;
• given x 
 y in X, there exists a T-clopen up-set U with
x ∈ U and y /∈ U .

NOTE: this is stronger than saying that 〈X;T〉 is a Boolean space
and 6 is closed in X ×X.
Morphisms: T-continuous, 6-preserving maps.
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Spectral spaces ∼= Priestley spaces, as categories
Spectral space: (X; τ) such that
• compact
• base of compact-opens
• compact-opens closed under finite intersections
• sober [irreducible closed sets are point closures]

Morphisms: f s.t. f−1 takes compact-opens to compact-opens

Priestley spaces
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τ = T↑, τ∗ = T↓
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T = patch
topology
from τ

τ∗ =
cocompact
topology
from τ

(X;T,6) (X; τ, τ∗)

“bi-spectral spaces”

spectral spaces

6τ=>τ∗

(X; τ)

T↑ = T-open up-sets, T↓ = T-open down-sets,
x 6τ y iff x ∈ clτ{y} [specialisation order]



Priestley duality in full categorical dress

We have a dual equivalence between

D = ISP(2) and PT = IScP+(2∼T) (≡ Priestley spaces)

set up by hom-functors H = D(−,2) and K = PT(−, 2∼T):

H : D→ PT,

{
H(A) = D(A,2)

H(f) = − ◦ f

K : PT →D,

{
K(X) = PT(X, 2∼T)

K(φ) = − ◦ φ
Here 2 = 〈{0, 1};∧,∨, 0, 1〉 and 2∼T = 〈{0, 1};6,T〉. and T

denotes the discrete topology.

Specifically we have a dual adjunction (H,K, e, ε) where the unit
and counit maps are given by evaluations and are isomorphisms.



Other examples?

Let’s see which other dual equivalences follow exactly the same
pattern as those between

• Boolean algebras and Boolean spaces

• (Bounded) distributive lattices and Priestley spaces

Emphasise: Priestley spaces are structured topological spaces
rather than topological spaces.
So are Boolean spaces, but you don’t recognise you have a
relational structure rather than a set when the set of relations is
empty.
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The basic framework: simplest case

Take M a finite algebra, with underlying set M . Let
A = ISP(M), the quasivariety generated by M.
Special, but already encompasses, besides B and D, a range of
classes much studied for their algebraic and logical importance:
e.g.

De Morgan algebras
Kleene algebras
Stone algebras
n-valued  Lukasiewicz–Moisil algebras
distributive bilattices

and significant subclasses of

Heyting algebras—e.g. Gödel algebras, Gn
discriminator algebras



Objective
Given M and A = ISP(M), we seek an alter ego M∼ (or dualising
object) for M so that there exists a dual equivalence between

A = ISP(M) and XT = IScP+(M∼ T)

set up by a dual adjunction obtained from hom-functors
D = A(−,M) and E = XT(−,M∼ T):

D : A→ XT,

{
D(A) = A(A,M)

D(f) = − ◦ f

E : XT → A,

{
E(X) = XT(X,M∼ T)

E(φ) = − ◦ φ
with ED and DE embeddings, and given by natural evaluation
maps.

Hom-sets are structured from the powers in which they sit.
Morphisms, being defined by composition, essentially take care of
themselves.



But what form should the alter ego take?

The alter ego M∼ T will be a discretely topologised structure on M .
We shall include in the structure of M∼ T relations and sometimes
partial (to include total) operations too. Appropriate compatibility
between M and M∼ T will be needed.

Given M∼ T, the generated topological quasivariety IScP+(M∼ T) is
the class of isomorphic copies of topologically closed substructures
of powers of M∼ ; the superscript indicates the empty structure is
included.

Topology here works the obvious way; relations and partial
operations are lifted pointwise to powers and then by restriction to
substructures.



Definitions
The topology on M is fixed throughout, so we shall write M∼ for
the structure we get from M∼ T by deleting T.

We say M∼
yields a pre-duality if D and E are well-defined functors and
ED and DE are embeddings;
yields a duality (or dualises A) if in addition ED(A) ∼= A for
all A ∈ A;
a full duality if M∼ yields a duality for which DE(X) ∼= X for
all X ∈ XT (then A and XT are dually equivalent).

Can we get a (full) duality?
• Often NO—a rich theory of dualisability exists, but this

would be a sidetrack here.

• Often YES—in particular whenever M is lattice-based.
(though this is .certainly not a necessary condition).

Time to reiterate a WARNING: this is not an exercise to which
pure category theory can provide a specific answer for specific
choices of M.
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Good news!

Theorem
(NU Strong Duality Theorem, special case (Davey/Werner;
Clark/Davey))
Let A = ISP(M), where M is a finite lattice-based algebra.

(i) Let R = S(M2). Then M∼ = 〈M ;R〉 yields a duality.

(ii) If the duality in (i) is not already full, then a full duality can
be obtained by taking R as above and adding to the structure
all partial homomorphisms from Mk to M for 0 6 k 6 n,
where the bound n can be explicitly computed from M.

Jf every non-trivial subalgebra of M is subdirectly irreducible,
then n = 1 suffices.

If M has no non-trivial subalgebras, then upgrading need
involve only addition of the endomorphisms of M to M∼ .



Picking the ingredients apart

The compatibility between M∼ and M achieved by making
the structure of M∼ ‘algebraic’ ensures that the hom-functors
D and E are well defined, and are embeddings.
The assumption that M is lattice-based ensures that M has
a 3-ary near-unanimity term (the median). This ensures
dualisability and, moreover, that we need at most binary
algebraic relations.
The duality will fail to be full if M∼ T generates too large a
topological quasivariety. Adding extra structure to M∼ in the
form of suitable partial (taken to include total) operations
solves this.
‘Strong’ refers to a condition (with many equivalents, one
being M∼ T injective in X) guaranteeing a duality is full. In a
strong duality each of the hom-functors D and E interchanges
surjections and embeddings—a bonus for applications.
Fundamental fact: FA(S), the free algebra on S generators,
is such that D(FA(S)) = M∼

S
T .



Simplifying a duality: entailment

The NU Strong Duality Theorem is powerful, but generally not
economical.

The natural dual space of A ∈ A = ISP(M) is D(A) = A(A,M).
Assuming M∼ yields a duality, then A ∼= ED(A), the family of all
continuous structure-preserving maps from D(A) to M∼ T.
Certainly:

if a binary relation is preserved, then so is its converse;
if binary relations r and s are preserved, then so is r ∩ s;
trivial relations (finite powers of M and any diagonal
subalgebra) are automatically preserved.

These are instances from a comprehensive list of entailment
constructs, whereby redundant relations can harmlessly be deleted
from an alter ego.



Examples, exploiting entailment
Priestley duality S(22) contains 22, diagonal subalgebra
{(0, 0), (1, 1)}, and the orders 6 and >. From above, we need
only 6.

De Morgan algebras: take M the 4-element De Morgan
algebra, with ¬ swapping 00 and 11 and fixing 01 and 10.
M∼ = 〈{00, 01; 10, 11};4, g, 〉. where g swaps 01 and 10, and
fixes 00 and 11.
Here |S(M2)| = 55.
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Other early examples of NU Strong dualities (Kleene algebras,
Stone algebras, . . .) were likewise handled ad hoc entailment
arguments, giving workable dualities.
But in general as |M| increases, |S(M2)| goes up FAST!



Optimising a duality: the Test Algebra Theorem

Suppose we have a dualising alter ego M∼ T = 〈R;T〉. Then each
r ∈ R is algebraic, and so is the universe of a subalgebra r of some
Mn: SO r ∈ A.

Theorem
The relation r can be discarded from R iff r ∼= E′D′(r), where the
hom-functors D′ and E′ are calculated with R replaced by
R′ = R \ {r}.



Example: a hierarchy of prioritised default bilattices
(Cabrer, Craig & Priestley, 2013) We set up strong dualities for
ISP(Kn) and (later, multisorted) for HSP(Kn), where

Kn = (Kn;∧k,∨k,∧t,∨t,¬,>,⊥).

>0 = >
f0 t0>i
fi ti>j
fj tj>n
fn tn

>n+1 = ⊥

t0

>=>0

f0

ti

>i

fi

tj

>j

fj

fn

tn
>n >n+1=⊥

Kn in knowledge order 6k (left) and truth order 6t (right) with
0 < i < j < n.
For n > 0, neither set of lattice operations is monotonic w.r.t. the
other.



Interpretation for default logic
The elements of Kn represent levels of truth and falsity. Knowledge
represented by the truth values at level m+ 1 is regarded as having
lower priority than from those at level m. Also one thinks of tm+1

as being ‘less true’ than tm and fm+1 as ‘less false’ than fm.

Base cases: K0 and K1 are Ginsberg’s bilattices FOUR and
SEVEN , with ¬ added. In SEVEN , t1 and f1 may be given the
connotation of ‘true by default’ and ‘false by default’.

>0 = >

f0 t0>i

fi ti>j

fj tj>n

fn tn

>n+1 = ⊥

t0

>=>0

f0

ti

>i

fi

tj

>j

fj

fn

tn

>n >n+1=⊥



Algebraic facts
Every element of Kn is term-definable; Kn has no proper
subalgebras.

For m 6 n there exists a surjective homomorphism
hn,m : Kn → Km.

For 0 6 m 6 n, there exists Sn,m ∈ S(K2
n) with elements

Sn,m = ∆n ∪ { (a, b) | a, b 6k>m+1 or a 6k b 6k>m }.

where ∆n = { (a, a) | a ∈ Kn }. We have Sn,j $ Sn,i for
0 6 i < j 6 n.

The subalgebras Sn,m entail every subalgebra of K2
n via

converses and intersections.

Each Kn is subdirectly irreducible.

ISP(Kn) = HSP(Kn) iff n = 0. For n > 1,

HSP(Kn) = ISP(Kn, . . . ,K0).



The algebraic binary relations: illustrations
n = 0: ISP(K0) is the variety DB of distributive bilattices. S0,0
is the knowledge order, 6k.

n = 1: Our binary algebraic relations are S1,0 and S1,1 on K1;
these can be depicted as quasi-orders.

f1, t1,>1,⊥

f9 t0

>

⊥

f1 t1

>1

f0 t0

>

S1,1 S1,0

Theorem
Duality theorem for ISP(Kn): The structure
Kn∼ = 〈Kn;Sn,n, . . . , Sn,0,T〉 yields a strong, and optimal, duality
on ISP(Kn).

For n = 0, the dual category IScP+(K0) is PT.



From ISP to HSP

In general HSP(M) 6= ISP(M).

However Jónsson’s Lemma implies that for any finitely
generated lattice-based variety A = HSP(M) we do have

HSP(M) = ISP(M) where M = HS(M),

so that M is a finite set of finite algebras, M0, . . . ,Mn.



Multisorted dualities

We look for an alter ego M∼ T = 〈M0
.∪ . . . .∪Mn;R,H,T〉, where

now T is the disjoint union of the discrete topologies on each Mi.
and R and H are algebraic, ‘between Mi’s’. SO an algebraic
binary relation is a subalgebra of some Mi ×Mj .
We form powers of M∼ T ‘by sorts’: M∼

S
T = MS

0

.∪ . . . .∪MS
n , with R,

H and T lifted in the obvious way.
The generated topological quasivariety XT = IScP+(M∼ T) has
objects which are multisorted structures which are isomorphic
copies of closed substructures of powers of M∼ T. Morphisms in XT

are continuous maps preserving the sorts and the structure
amongst them.
Given A ∈ A, we let D(A) = A(A,M0)

.∪ · · · .∪A(A,Mn),
Given X = X0

.∪ . . . .∪Xn ∈ X, we let E(X) = X(X,M∼ T), viewing
it as a subalgebra of MX0

0 × · · · ×MXn
n .

Everything extends from the single-sorted case to the multisorted
one. In particular the NU Strong Duality Theorem. Now
D(FA(S)) = M∼

S
T .



Duality theorem for A = HSP(Kn)

Theorem
Write HSP(Kn) as ISP(M), where M = {K0 . . . ,Kn}. Then the
alter ego

M∼ T = 〈K0
.∪ . . . .∪Kn; {Sm,m}06m6n, {hi,i−1}16i6n,T〉,

yields a strong, and optimal, duality on HSP(Kn).

The dual category for HSP(Kn) can be described for general n.

This duality leads to a structure theorem for members of HSP(Kn)
which is beyond the reach of traditional bilattice methods.
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D-PT -based dualities

Assume A is a variety of D-based algebras, not necessarily finitely
generated.

1 Take the class U(A) (the D-reducts).
2 Seek to equip the associated class of Priestley spaces,

Z := HU(A), with additional (relational or functional)
structure so that, for each A ∈ A, KHU(A) becomes an
algebra in A isomorphic to A;

3 Identify a suitable class of morphisms, to make Z into a
category.

If this gives a dual equivalence between A and Z, we say we have
a D-PT -based duality.

Literature is full of examples!



Which way to go?

1 Natural duality theory: for any finitely generated D-based
variety we can call on the NU Strong Duality Theorem
(single-sorted or multisorted).

2 D-PT -based dualities.

3 From, and for, logic: algebraic and relational (Kripke-style)
semantics for non-classical propositional logics.

Both (1) and (2) provide valuable tools for studying algebraic
properties of D-based varieties.

Normally, For a given variety, a discrete duality (as in (3)) differs
from a D-PT -based just through the absence or presence of
topology. Canonical extensions provide a systematic approach
to (3).



Rivals?

Pro Con

natural
duality

a strong duality can always
be found

duality may be complicated
(may need entailment to
simplify)

M governs how the duality
works

restriction to finitely gener-
ated classes (usually)

good categorical properties,
notably w.r.t. free algebras:
D(FA)) = M∼

S
T

concrete representation is via
functions, not sets, if |M | >
2

D-PT -
based
duality

close relationship to Kripke-
style semantics

concrete representation via
sets

products seldom cartesian;
free algebras hard to find



Dualities in collaboration
Priestley duality per se has excellent properties: in particular

embeddings/surjections in D correspond to
surjections/embeddings in PT;
finite products in D correspond to finite disjoint unions in PT;
coproducts in D correspond to cartesian products in PT;
it is ‘logarithmic’—a significant asset computationally.

With a D-PT -based duality one can exploit to some extent these
excellent features of the parent duality. For a suitable class
A = HSP(M), it can be a great way to get a handle on, e.g.

congruences, and subdirectly irreducible algebras,
subalgebras, in particular of M2.

But a D-PT -based duality will seldom give easy access to free
algebras or more to generally coproducts in A. For such categorical
notions we want a categorically natural duality—a natural duality.

SO: to get the best of both worlds we’d like to have BOTH a
D-PT -based duality and a natural one, when available.



From a natural dual space to the associated
Priestley dual space

For simplicity, take A = ISP(M), where M is finite and D-based.
Let H : D→ PT and K : PT →D be the hom-functors setting up
Priestley duality. Assume we have a forgetful functor U : A→D,
given on objects by a term-reduct.
The key to linking D(A) and HU(A) (for any A ∈ A) is

Ω = HU(M).

For ωi, ω2 ∈ Ω, consider the following sublattice of U(M2):

(ω1, ω2)
−1(6) := { (a, b) ∈M2 | ω1(a) 6 ω2(b) }.

Let Rω1,ω2 be the set (possibly empty) of algebraic relations
maximal w.r.t. being contained in (ω1, ω2)

−1(6).
FACT (part of the Multisorted Piggyback Duality Theorem)

R =
⋃{Rω1,ω2 | ω1, ω2 ∈ Ω }.

yields a duality on A.



From D(A) to HU(A), continued

Fix A ∈ A, Remember that the dual space D(A) = A(A,M) is
viewed as a closed substructure of M∼

A and carries relations rD(A),
for r ∈ R, obtained by pointwise lifting.
Define 4 on D(A)× Ω by

(x, ω1) 4 (y, ω2)⇐⇒ (x, y) ∈ rD(A) for some r ∈ Rω1,ω2 .

Theorem
(Cabrer & Priestley, 2012) Let ≈ be the equivalence relation
4 ∩ <, Then the map Ψ: (D(A)× Ω)/≈ → HU(A) given by

[(x, ω)]≈ 7−→ ω ◦ x (x ∈ D(A), ω ∈ HU(M))

is well defined and a Priestley space isomorphism.

SO: YA = (D(A)× Ω)/≈ ‘is’ the Priestley dual of U(A).



Remarks

When any additional operations in A are determined by the
underlying lattice order, then A is uniquely determined by
HU(A). This happens, e.g., whenever M is a Heyting algebra
or is pseudocomplemented.
In general, we fully recapture A only once we equip YA with
extra structure to model additional operations. Work in
progress as to how to do this in general; special cases easy to
handle—whatever, what happens with M fully determines
process for general A.
In a few cases, there exists ω ∈ Ω such that
D(A)× {ω} ∼= HU(A) and, at the level of Priestley space
reducts, the natural duality ‘is’ a D-PT -based duality. This
happens, e.g., for De Morgan algebras and Stone algebras.
The translation process is the key to understanding how
coproducts work in finitely generated D-based quasivarieties
(Cabrer and Priestley, 2012) . If you didn’t hear Leo Cabrer’s
talk on this at TACL, too bad!



Two dualities in partnership: Priestley duality and
Banaschewski duality

D := ISP(2), P := IS0P+(2∼) (posets),

PT := IScP(2∼T), DT := IS0cP+(2T) (Boolean-topological DLs)

Technical note: P allows empty indexed products, yielding the total
1-element structure; P+ doesn’t. Operator S excludes the empty
structure while S0 includes it, when there are no nullary operations.

D PT

DT P

H

K

nD [

F

G

nP [

Here the top adjunction gives Priestley duality. The bottom one
gives the duality between P and DT (Banaschewski, 1976).
Symbol [ denotes the functor forgetting topology.



Unanswered questions
Does the duality between P and DT fit into a theory of
natural dualities, for structures, rather than for algebras?
ANSWER: YES. We can formulate a notion of compatibility
between two structures M1 and M∼ 2 on the same finite set M
(each may include relations and partial (including total)
operations). But dualisability questions are non-trivial in
general. The duality between P and DT fits into this
generalised framework.
Buy one, get one free?: When In general, does one duality
(such as that between D and PT), have a partner duality
obtained by swapping the topology from one category to the
other?
ANSWER: Yes, sometimes, but not always.
In the example, what are the vertical arrows in the square
diagram doing?
ANSWER: It might have something to do with canonical
extensions . . ..

Stories for another day!


