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Commutative bounded integral residuated lattices (residuated lattices,
in short) form a large class of algebras which contains e.g. algebras
that are algebraic counterparts of some propositional many-valued
and fuzzy logics:

MTL-algebras, i.e. algebras of the monoidal t-norm based logic;

BL-algebras, i.e. algebras of Hájek’s basic fuzzy logic;

MV-algebras, i.e. algebras of the  Lukasiewicz infinite valued logic.

Moreover,

Heyting algebras, i.e. algebras of the intuitionistic logic.

Residuated lattices = algebras of a certain general logic that contains
the mentioned non-classical logics as particular cases.

The deductive systems of those logics correspond to the filters of their
algebraic counterparts.
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A commutative bounded integral residuated lattice is an algebra
M = (M; �,∨,∧,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉 satisfying the following
conditions.

(i) (M; �, 1) is a commutative monoid.

(ii) (M; ∨,∧, 0, 1) is a bounded lattice.

(iii) x � y ≤ z if and only if x ≤ y → z , for any x , y , z ∈ M.

In what follows, by a residuated lattice we will mean a commutative
bounded integral residuated lattice.

We define the unary operation (negation) ”−” on M by x− := x → 0
for any x ∈ M.
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A residuated lattice M is

an MTL-algebra if M satisfies the identity of pre-linearity
(iv) (x → y) ∨ (y → x) = 1;

involutive if M satisfies the identity of double negation
(v) x−− = x ;

an Rl-monoid (or a bounded commutative GBL-algebra) if M satisfies
the identity of divisibility
(vi) (x → y)� x = x ∧ y ;

a BL-algebra if M satisfies both (iv) and (vi);

an MV-algebra if M is an involutive BL-algebra;

a Heyting algebra if the operations ”�” and ”∧” coincide on M.
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Lemma

Let M be a residuated lattice. Then for any x , y , z ∈ M we have:

(i) x ≤ y =⇒ y− ≤ x−,

(ii) x � y ≤ x ∧ y ,

(iii) (x → y)� x ≤ y ,

(iv) x ≤ x−−,

(v) x−−− = x−,

(vi) x ≤ y =⇒ y → z ≤ x → z ,

(vii) x ≤ y =⇒ z → x ≤ z → y ,

(viii) x � (y ∨ z) = (x � y) ∨ (x � z),

(ix) x ∨ (y � z) ≥ (x ∨ y)� (x ∨ z).
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If M is a residuated lattice and ∅ 6= F ⊆ M then F is called a filter of M
if for any x , y ∈ F and z ∈ M:

1. x � y ∈ F ;

2. x ≤ z =⇒ z ∈ F .

If ∅ 6= F ⊆ M then F is a filter of M if and only if for any x , y ∈ M

3. x ∈ F , x → y ∈ F =⇒ y ∈ F ,

that means if F is a deductive system of M.

Denote by F(M) the set of all filters of a residuated lattice M. Then
(F(M), ⊆) is a complete lattice in which infima are equal to the set
intersections.
If B ⊆ M, denote by 〈B〉 the filter of M generated by B. Then for
∅ 6= B ⊆ M we have

〈B〉 = {z ∈ M : z ≥ b1 � · · · � bn, where n ∈ N, b1, . . . , bn ∈ B}.
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If M is a residuated lattice, F ∈ F(M) and B ⊆ M, put

EF (B) := {x ∈ M : x ∨ b ∈ F for every b ∈ B}.

Theorem

Let M be a residuated lattice, F ∈ F(M) and B ⊆ M. Then
EF (B) ∈ F(M) and F ⊆ EF (B).

EF (B) will be called the extended filter of a filter F associated with a
subset B.

Theorem

If M is a residuated lattice, B ⊆ M and 〈B〉 is the filter of M generated
by B, then EF (B) = EF (〈B〉) for any F ∈ F(M).
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Let L be a lattice with 0. An element a ∈ L is pseudocomplemented
if there is a∗ ∈ L, called the pseudocomplement of a such that a ∧ x = 0
iff x ≤ a∗, for each x ∈ L. A pseudocomplemented lattice is a lattice
with 0 in which every element has a pseudocomplement.

Let L be a lattice and a, b ∈ L. If there is a largest x ∈ L such that
a ∧ x ≤ b, then this element is denoted by a→ b and is called the relative
pseudocomplement of a with respect to b. A Heyting algebra is a lattice
with 0 in which a→ b exists for each a, b ∈ L.

Heyting algebras satisfy the infinite distributive law: If L is a Heyting

algebra, {bi : i ∈ I} ⊆ L and
∨
i∈I

bi exists then for each a ∈ L,
∨
i∈I

(a ∧ bi )

exists and a ∧
∨
i∈I

bi =
∨
i∈I

(a ∧ bi ).
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Based on the previous theorem, in the sequel we will investigate, without
loss of generality, EF (B) only for B ∈ F(M).

Theorem

If M is a residuated lattice, then (F(M),⊆) is a complete Heyting algebra.
Namely, if F , K ∈ F(M) then the relative pseudocomplement K → F
of the filter K with respect to F is equal to EF (K ).

Corollary

a) Every interval [H,K ] in the lattice F(M) is a Heyting algebra.

b) If F is an arbitrary filter of M and K ∈ F(M) such that F ⊆ K ,
then EF (K ) is the pseudocomplement of K in the Heyting algebra [F ,M].

c) For F = {1} and any K ∈ F(M) we have E{1}(K ) = K ∗.
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Theorem

Let M be a residuated lattice and F , K , G , L, Fi , Ki ∈ F(M), i ∈ I .
Then:

1 K ∩ EF (K ) ⊆ F ;

2 K ⊆ EF (EF (K ));

3 F ⊆ EF (K );

4 F ⊆ G =⇒ EF (K ) ⊆ EG (K );

5 F ⊆ G =⇒ EK (G ) ⊆ EK (F );

6 K ∩ EF (K ) = K ∩ F ;

7 EF (K ) = M ⇐⇒ K ⊆ F ;

8 EF (EF (G )) ∩ EF (G ) = F ;

9 F ⊆ G =⇒ EF (G ) ∩ G = F ;

10 EF (EF (EF (K ))) = EF (K ).
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Theorem
1 K ⊆ L, EF (K ) = F =⇒ EF (L) = F ;

2 EEM(L)(K ) = EM(K ∩ L);

3 EEF (K)(L) = EEF (L)(K );

4 EF (K ) = F =⇒ EF (EF (K )) = M;

5

⋂
i∈I

EFi
(K ) = E⋂

{Fi : i∈I}(K );

6 EF

(∨
i∈I

Ki

)
=
⋂
i∈I

EF (Ki ).
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Now we will deal with the sets EF (K ) where F and K , respectively, are
fixed.
Let M be a residuated lattice and K ∈ F(M). Put

E (K ) := {EF (K ) : F ∈ F(M)}.

Theorem

If M is a residuated lattice and K ∈ F(M), then (E (K ),⊆) is a complete
lattice which is a complete inf-subsemilattice of F(M).

One can show that E (K ), in general, is not a sublattice of F(M). We can
do it in a more general setting for arbitrary Heyting algebras.
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Let A be a complete Heyting algebra. If d ∈ A, put
E (d) := {d → x : x ∈ A}. Then, analogously as in a special case in
the previous theorem, we can show that E (d) is a complete lattice which
is a complete inf-subsemilattice of A.

Proposition

If A is a complete Heyting algebra and a ∈ A, then E (a) need not be
a sublattice of the lattice A.

Let A be any complete Heyting algebra such that subset A \ {1} have
a greatest element a and let there exist elements b, c ∈ A such that
b < a, c < a and b ∨ c = a. Then a→ y = y for any y < a
and a→ a = 1 = a→ 1, hence a /∈ E (a), but b, c ∈ E (a).
Therefore in the lattice E (a) we have b ∨E(a) c = 1, that means E (a)
is not a sublattice of A.
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Example 1

Consider the lattice A with the diagram in the figure.
Then A is a complete Heyting algebra with the relative
pseudocomplements in the table.
We get E (a) = {0, b, c , 1}, but the lattice E (a) is not a sublattice of A.

→ 0 a b c 1

0 1 1 1 1 1
a 0 1 b c 1
b c 1 1 c 1
c b 1 b 1 1
1 0 a b c 1

s
s

s s
s

0

b

a

c

1

@
@@

�
��

�
��

@
@@
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Example 2

Let M be the lattice in the figure. Then M is a Heyting algebra with
the relative pseudocomplements in the table.

→ 0 a b c 1

0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

s
s

s s
sa

b

1

c

0

@
@@

�
��

�
��

@
@@

If we put � = ∧, then M = (M; ∨,∧,�,→, 0, 1) is a residuated lattice.
Since the filters of the residuated lattice M are precisely the lattice filters
of M, we get F(M) = {F0, Fa, Fb, Fc , F1}, where
F0 = M = {0, a, b, c , 1}, Fa = {a, b, c , 1}, Fb = {b, 1}, Fc = {c , 1},
F1 = {1}. Hence the lattice F(M) is anti-isomorphic to the lattice M.
(See the following figure.) Therefore, similarly as in Example 1, we have
that E (Fa) = {F1, Fb, Fc , F0} is not a sublattice of F(M).
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Corollary

If M is a residuated lattice and F ∈ F(M), then E (F ) need not be
a sublattice of the lattice F(M).
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Let M be a residuated lattice and F ∈ F(M). Put

EF := {EF (K ) : K ∈ F(M)}.

Theorem

If M is a residuated lattice and F ∈ F(M), then EF ordered by set
inclusion is a complete lattice which is a complete inf-subsemilattice
of F(M).

We can show that EF (similarly as E (K )) need not be a sublattice
of F(M). We can again do it in a more general setting for arbitrary
Heyting algebras.

Let A be a complete Heyting algebra. If a ∈ A, put
Ea := {x → a : a ∈ A}. Then analogously as in a special case in
the preceding theorem one can show that Ea is a complete
inf-subsemilattice of A.
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Proposition

If A is a complete Heyting algebra and a ∈ A, then Ea need not be
a sublattice of the lattice A.

Let A be a complete Heyting algebra which contains elements a, b, c , d
such that a < b < d < 1, a < c < d < 1, b ∧ c = a, b ∨ c = d , d is
the greatest element in A \ {1} and a is the greatest element in
L \ {b, c , d , 1}. The d /∈ Ea, while b, c ∈ Ea. From this we get
b ∨Ea c 6= b ∨A c , and so Ea is not a sublattice of the lattice A.

Example 3

Let us consider the Heyting algebra A from Example 1.
We get E0 = {0, b, c , 1}, hence E0 is not a sublattice of A.
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Example 4

Let M be the residuated lattice from Example 2.
Then EF1 = {F1, Fb, Fc , F0}, and hence EF1 is not a sublattice of
the lattice F(M).

Corollary

If M is a residuated lattice and F ∈ F(M), then EF need not be
a sublattice of F(M).
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Now we will deal with further connections between two filters of residuated
lattices. Let M be a residuated lattice and F , K ∈ F(M). Then F is
called stable with respect to K if EF (K ) = F .

Proposition

Let M be a residuated lattice and F , K , L ∈ F(M).

1 F is stable with respect to F .

2 If K ⊆ L and F is stable with respect to K , then F is also stable
with respect to L.

3 F is stable with respect to K if and only if EF (EF (K )) = M.
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Proposition

Let A be a Heyting algebra, x , y ∈ A and y < x . Let x , y ∈ [a, b], where
a, b ∈ A, a ≤ b and the interval [a, b] is a chain such that v ≥ a implies
v ≥ b and w ≤ b implies w ≤ a, for any v , w ∈ A. Then x → y = y .

The following theorem is now an immediate consequence.

Theorem

Let M be a residuated lattice, K , F , P, R ∈ F(M), F ⊂ K
and F , K ∈ [P,R], where [P,R] is a chain and S ⊇ P implies S ⊇ R
and T ⊆ R implies T ⊆ P, for any S , T ∈ F(M). Then F is stable
with respect to K .
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Thank you for your attention.
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