On the filter theory of residuated lattices

Jiří Rachůnek and Dana Šalounová

Palacký University in Olomouc VŠB–Technical University of Ostrava

Czech Republic

Orange, August 5, 2013

Commutative bounded integral residuated lattices (residuated lattices, in short) form a large class of algebras which contains e.g. algebras that are algebraic counterparts of some propositional many-valued and fuzzy logics:

MTL-algebras, i.e. algebras of the monoidal *t*-norm based logic; BL-algebras, i.e. algebras of Hájek's basic fuzzy logic; MV-algebras, i.e. algebras of the Łukasiewicz infinite valued logic. Moreover,

Heyting algebras, i.e. algebras of the intuitionistic logic.

Residuated lattices = algebras of a certain general logic that contains the mentioned non-classical logics as particular cases.

The deductive systems of those logics correspond to the filters of their algebraic counterparts.

A commutative bounded integral residuated lattice is an algebra $M = (M; \odot, \lor, \land, \rightarrow, 0, 1)$ of type $\langle 2, 2, 2, 2, 0, 0 \rangle$ satisfying the following conditions.

- (i) $(M; \odot, 1)$ is a commutative monoid.
- (ii) $(M; \vee, \wedge, 0, 1)$ is a bounded lattice.

(iii) $x \odot y \le z$ if and only if $x \le y \to z$, for any $x, y, z \in M$.

In what follows, by a residuated lattice we will mean a commutative bounded integral residuated lattice.

We define the unary operation (negation) "-" on M by $x^- := x \to 0$ for any $x \in M$.

∃ 𝒴𝔄

(日) (周) (三) (三)

A residuated lattice M is

an MTL-algebra if *M* satisfies the identity of pre-linearity (iv) $(x \rightarrow y) \lor (y \rightarrow x) = 1$;

involutive if *M* satisfies the identity of double negation (v) $x^{--} = x$;

an Rl-monoid (or a bounded commutative GBL-algebra) if M satisfies the identity of divisibility

(vi)
$$(x \rightarrow y) \odot x = x \land y;$$

a BL-algebra if M satisfies both (iv) and (vi);

an MV-algebra if M is an involutive BL-algebra;

a Heyting algebra if the operations " \odot " and " \wedge " coincide on *M*.

- 4 同 6 4 日 6 4 日 6

Lemma

Let *M* be a residuated lattice. Then for any $x, y, z \in M$ we have:

(i)
$$x \le y \Longrightarrow y^- \le x^-$$
,
(ii) $x \odot y \le x \land y$,
(iii) $(x \rightarrow y) \odot x \le y$,
(iv) $x \le x^{--}$,
(v) $x^{---} = x^-$,
(vi) $x \le y \Longrightarrow y \rightarrow z \le x \rightarrow z$,
(vii) $x \le y \Longrightarrow z \rightarrow x \le z \rightarrow y$,
(viii) $x \odot (y \lor z) = (x \odot y) \lor (x \odot z)$,
(ix) $x \lor (y \odot z) \ge (x \lor y) \odot (x \lor z)$.

• • • • • • • • • • • •

If *M* is a residuated lattice and $\emptyset \neq F \subseteq M$ then *F* is called a filter of *M* if for any *x*, *y* \in *F* and *z* \in *M*:

- 1. $x \odot y \in F$;
- 2. $x \leq z \implies z \in F$.

If $\emptyset \neq F \subseteq M$ then F is a filter of M if and only if for any $x, y \in M$

3.
$$x \in F, x \to y \in F \implies y \in F$$
,

that means if F is a deductive system of M.

Denote by $\mathcal{F}(M)$ the set of all filters of a residuated lattice M. Then $(\mathcal{F}(M), \subseteq)$ is a complete lattice in which infima are equal to the set intersections.

If $B \subseteq M$, denote by $\langle B \rangle$ the filter of M generated by B. Then for $\emptyset \neq B \subseteq M$ we have

 $\langle B \rangle = \{ z \in M : z \ge b_1 \odot \cdots \odot b_n, \text{ where } n \in \mathbb{N}, b_1, \ldots, b_n \in B \}.$

If M is a residuated lattice, $F \in \mathcal{F}(M)$ and $B \subseteq M$, put

$$E_F(B) := \{ x \in M : x \lor b \in F \text{ for every } b \in B \}.$$

Theorem

Let *M* be a residuated lattice, $F \in \mathcal{F}(M)$ and $B \subseteq M$. Then $E_F(B) \in \mathcal{F}(M)$ and $F \subseteq E_F(B)$.

 $E_F(B)$ will be called the extended filter of a filter F associated with a subset B.

Theorem

If *M* is a residuated lattice, $B \subseteq M$ and $\langle B \rangle$ is the filter of *M* generated by *B*, then $E_F(B) = E_F(\langle B \rangle)$ for any $F \in \mathcal{F}(M)$.

(日) (周) (三) (三)

Let *L* be a lattice with 0. An element $a \in L$ is pseudocomplemented if there is $a^* \in L$, called the pseudocomplement of *a* such that $a \wedge x = 0$ iff $x \leq a^*$, for each $x \in L$. A pseudocomplemented lattice is a lattice with 0 in which every element has a pseudocomplement.

Let *L* be a lattice and *a*, $b \in L$. If there is a largest $x \in L$ such that $a \land x \leq b$, then this element is denoted by $a \to b$ and is called the relative pseudocomplement of *a* with respect to *b*. A Heyting algebra is a lattice with 0 in which $a \to b$ exists for each *a*, $b \in L$.

Heyting algebras satisfy the infinite distributive law: If *L* is a Heyting algebra, $\{b_i : i \in I\} \subseteq L$ and $\bigvee_{i \in I} b_i$ exists then for each $a \in L$, $\bigvee_{i \in I} (a \land b_i)$ exists and $a \land \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \land b_i)$.

(日) (周) (三) (三)

Based on the previous theorem, in the sequel we will investigate, without loss of generality, $E_F(B)$ only for $B \in \mathcal{F}(M)$.

Theorem

If *M* is a residuated lattice, then $(\mathcal{F}(M), \subseteq)$ is a complete Heyting algebra. Namely, if *F*, $K \in \mathcal{F}(M)$ then the relative pseudocomplement $K \to F$ of the filter *K* with respect to *F* is equal to $E_F(K)$.

Corollary

a) Every interval [H, K] in the lattice $\mathcal{F}(M)$ is a Heyting algebra.

b) If F is an arbitrary filter of M and $K \in \mathcal{F}(M)$ such that $F \subseteq K$,

then $E_F(K)$ is the pseudocomplement of K in the Heyting algebra [F, M].

c) For $F = \{1\}$ and any $K \in \mathcal{F}(M)$ we have $E_{\{1\}}(K) = K^*$.

Theorem

Let *M* be a residuated lattice and *F*, *K*, *G*, *L*, *F_i*, *K_i* $\in \mathcal{F}(M)$, *i* \in *I*. Then:

$$\bullet \quad K \cap E_F(K) \subseteq F;$$

$$\bullet \quad F \subseteq G \implies E_F(K) \subseteq E_G(K);$$

$$\bullet \quad F \subseteq G \implies E_{\mathcal{K}}(G) \subseteq E_{\mathcal{K}}(F);$$

<ロト </p>

Theorem

$$\bullet \quad K \subseteq L, \ E_F(K) = F \implies E_F(L) = F;$$

$$\bullet \quad E_F\left(\bigvee_{i\in I}K_i\right)=\bigcap_{i\in I}E_F(K_i).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Now we will deal with the sets $E_F(K)$ where F and K, respectively, are fixed.

Let *M* be a residuated lattice and $K \in \mathcal{F}(M)$. Put

$$E(K) := \{E_F(K) : F \in \mathcal{F}(M)\}.$$

Theorem

If *M* is a residuated lattice and $K \in \mathcal{F}(M)$, then $(E(K), \subseteq)$ is a complete lattice which is a complete inf-subsemilattice of $\mathcal{F}(M)$.

One can show that E(K), in general, is not a sublattice of $\mathcal{F}(M)$. We can do it in a more general setting for arbitrary Heyting algebras.

Let A be a complete Heyting algebra. If $d \in A$, put $E(d) := \{d \to x : x \in A\}$. Then, analogously as in a special case in the previous theorem, we can show that E(d) is a complete lattice which is a complete inf-subsemilattice of A.

Proposition

If A is a complete Heyting algebra and $a \in A$, then E(a) need not be a sublattice of the lattice A.

Let A be any complete Heyting algebra such that subset $A \setminus \{1\}$ have a greatest element a and let there exist elements b, $c \in A$ such that b < a, c < a and $b \lor c = a$. Then $a \to y = y$ for any y < aand $a \to a = 1 = a \to 1$, hence $a \notin E(a)$, but $b, c \in E(a)$. Therefore in the lattice E(a) we have $b \lor_{E(a)} c = 1$, that means E(a)is not a sublattice of A.

イロト 不得下 イヨト イヨト 二日

Example 1

Consider the lattice A with the diagram in the figure. Then A is a complete Heyting algebra with the relative pseudocomplements in the table.

We get $E(a) = \{0, b, c, 1\}$, but the lattice E(a) is not a sublattice of A.

Example 2

Let M be the lattice in the figure. Then M is a Heyting algebra with the relative pseudocomplements in the table.

If we put $\odot = \wedge$, then $M = (M; \lor, \land, \odot, \rightarrow, 0, 1)$ is a residuated lattice. Since the filters of the residuated lattice M are precisely the lattice filters of M, we get $\mathcal{F}(M) = \{F_0, F_a, F_b, F_c, F_1\}$, where $F_0 = M = \{0, a, b, c, 1\}, F_a = \{a, b, c, 1\}, F_b = \{b, 1\}, F_c = \{c, 1\}, F_1 = \{1\}$. Hence the lattice $\mathcal{F}(M)$ is anti-isomorphic to the lattice M. (See the following figure.) Therefore, similarly as in Example 1, we have that $E(F_a) = \{F_1, F_b, F_c, F_0\}$ is not a sublattice of $\mathcal{F}(M)$.

3

イロト イヨト イヨト イヨト

Corollary

If *M* is a residuated lattice and $F \in \mathcal{F}(M)$, then E(F) need not be a sublattice of the lattice $\mathcal{F}(M)$.

- **∢ ∃** ►

Let *M* be a residuated lattice and $F \in \mathcal{F}(M)$. Put

$$E_F := \{E_F(K) : K \in \mathcal{F}(M)\}.$$

Theorem

If M is a residuated lattice and $F \in \mathcal{F}(M)$, then E_F ordered by set inclusion is a complete lattice which is a complete inf-subsemilattice of $\mathcal{F}(M)$.

We can show that E_F (similarly as E(K)) need not be a sublattice of $\mathcal{F}(M)$. We can again do it in a more general setting for arbitrary Heyting algebras.

Let A be a complete Heyting algebra. If $a \in A$, put $E_a := \{x \to a : a \in A\}$. Then analogously as in a special case in the preceding theorem one can show that E_a is a complete inf-subsemilattice of A.

Proposition

If A is a complete Heyting algebra and $a \in A$, then E_a need not be a sublattice of the lattice A.

Let A be a complete Heyting algebra which contains elements a, b, c, d such that a < b < d < 1, a < c < d < 1, $b \land c = a$, $b \lor c = d$, d is the greatest element in $A \setminus \{1\}$ and a is the greatest element in $L \setminus \{b, c, d, 1\}$. The $d \notin E_a$, while b, $c \in E_a$. From this we get $b \lor_{E_a} c \neq b \lor_A c$, and so E_a is not a sublattice of the lattice A.

Example 3

Let us consider the Heyting algebra A from Example 1. We get $E_0 = \{0, b, c, 1\}$, hence E_0 is not a sublattice of A.

(日) (同) (三) (三)

Example 4

Let M be the residuated lattice from Example 2. Then $E_{F_1} = \{F_1, F_b, F_c, F_0\}$, and hence E_{F_1} is not a sublattice of the lattice $\mathcal{F}(M)$.

Corollary

If *M* is a residuated lattice and $F \in \mathcal{F}(M)$, then E_F need not be a sublattice of $\mathcal{F}(M)$.

Now we will deal with further connections between two filters of residuated lattices. Let M be a residuated lattice and $F, K \in \mathcal{F}(M)$. Then F is called stable with respect to K if $E_F(K) = F$.

Proposition

Let *M* be a residuated lattice and *F*, *K*, $L \in \mathcal{F}(M)$.

- F is stable with respect to F.
- ② If $K \subseteq L$ and F is stable with respect to K, then F is also stable with respect to L.
- § F is stable with respect to K if and only if $E_F(E_F(K)) = M$.

Proposition

Let A be a Heyting algebra, $x, y \in A$ and y < x. Let $x, y \in [a, b]$, where $a, b \in A, a \leq b$ and the interval [a, b] is a chain such that $v \geq a$ implies $v \geq b$ and $w \leq b$ implies $w \leq a$, for any $v, w \in A$. Then $x \to y = y$.

The following theorem is now an immediate consequence.

Theorem

```
Let M be a residuated lattice, K, F, P, R \in \mathcal{F}(M), F \subset K
and F, K \in [P, R], where [P, R] is a chain and S \supseteq P implies S \supseteq R
and T \subseteq R implies T \subseteq P, for any S, T \in \mathcal{F}(M). Then F is stable
with respect to K.
```

(日) (周) (三) (三)

Thank you for your attention.

Image: A math a math