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Abstract.
Let S and T be disjoint semigroups, S having an identity 1S and
T having a zero element 0.
A semigroup Ω is called an [ideal] extension of S by T if it
contains S as an ideal and if the Rees factor semigroup Ω

S is

isomorphic to T , i.e. Ω
S ' T .

Ideal extension for topological semigroup as subdirect product of
S × T was studied by Christoph in 1970.
In this talk we introduce ideal extension for topological semigroups
using a new method, then we investigate the compactification
spaces of these structures.
As a consequence, we use this result to characterize
compactification spaces for Brandt λ-extension of topological
semigroups.
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In this talk S and T are two disjoint semigroups, S having an
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Definition

Let S and T be disjoint topological semigroups, T having a zero
element 0. A topological semigroup Ω is a topological extension of
S by T if Ω contains S as an ideal and the Rees factor semigroup
Ω
S is topologically isomorphic to T.
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Motivation.

If Ω is an ideal extension of topological semigroup S by T and
Ω′, S ′ and T ′ are compactifications of Ω, S and T
respectively, whether Ω′ can naturally characterize by S ′ and
T ′.

In especial case, results of this type are known by some
authors, say for topological tensor product of semigroups,
Sherier products of semigroups.
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Structure of ideal extension of semigroups for discrete case.

A mapping A 7→ Ā of T ∗ = T − {0} into S is called partial
homomorphism if AB = A B, whenever AB 6= 0.

It is known that a partial homomorphism A→ A of the
semigroup T ∗ into S determines an extension Ω of S by T as
follows: For A,B ∈ T and s, t ∈ S ,

(P1) AoB =

{
AB ifAB 6= 0

A B ifAB = 0

(P2) Aos = As, (P3) soA = sA, (P4) sot = st.

and every extension can be so constructed
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A mapping A 7→ Ā of T ∗ = T − {0} into S is called partial
homomorphism if AB = A B, whenever AB 6= 0.

It is known that a partial homomorphism A→ A of the
semigroup T ∗ into S determines an extension Ω of S by T as
follows: For A,B ∈ T and s, t ∈ S ,

(P1) AoB =

{
AB ifAB 6= 0

A B ifAB = 0

(P2) Aos = As, (P3) soA = sA, (P4) sot = st.

and every extension can be so constructed



Structure of ideal extension of semigroups for discrete case.
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The following theorem provides a general solution for the existence
of topological extension of topological semigroups.

Theorem

Let S and T be disjoint topological semigroups such that T has a
zero. Let θ : T ∗ = T − {0} → S be continuous partial
homomorphism. Then Ω = S ∪ T ∗ with multiplication
(P1,P2,P3,P4) is a topological extension of S by T . Conversely,
every topological extension of topological semigroup S by
topological semigroup T can be so constructed
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Proof.

(Sketch)

Clearly, Ω is an extension of S by T .

Let
U = {v ⊆ Ω | v ∩ T and v ∩ S is open in T and S respectively }

Ω is a topological semigroup with identity.

Suppose τ be the equivalence relation generated by
τ = {(u, su′) | s ∈ S , u, u′ ∈ Ω}
ρ

Ω
= {(x , y) ∈ Ω× Ω | (uxv , uyv) ∈ τ, for all u, v ∈ Ω}. ρ

Ω
is

the largest congruence on Ω× Ω contained in τ , and
Ω
ρ

Ω
' Ω

S ' T .
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Structure of compactification of ideal extensions of
topological semigroups

Let S and T be disjoint topological semigroups such that T
has a zero and Ω be a topological extension of S by T .

Let (ψ,X ) be a topological semigroup compactification of Ω
and τ

X
be the equivalence relation generated by

{(x , ψ(s)y) | x , y ∈ X , s ∈ S} and ρ
X

be the closure of the
largest congruence on X × X contained in τ

X
.
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Theorem

Let S and T be disjoint topological semigroups such that T has a
zero and Ω be a topological extension of S by T . Let (ψ,X ) be a
topological semigroup compactification of Ω. Then X

ρ
X

is a

topological semigroup compactification of Ω
S ' T .



Theorem

Let S and T be disjoint topological semigroups such that T has a
zero and Ω be a topological extension of S by T . Let (εT ,T

P)
and (εΩ,Ω

P) be the universal P-compactifications of T and Ω

respectively. Then TP ' ΩP

ρ
ΩP

if

i) P is invariant under homomorphism,
ii) universal P-compactification is a topological semigroup.



Corollary

Let Ω be a topological extension of topological semigroup S by
topological semigroup T . Let (εs , S

sap), (εΩ,Ω
sap) [resp.

(εs ,S
ap), (εΩ,Ω

ap)] be the strongly almost periodic
compactifications [resp. almost periodic compactifications ] of S
and Ω, respectively. Then T sap ' Ωsap

ρ
Ωsap

[resp. T ap ' Ωap

ρ
Ωap

].



Question.

If XS and XT are topological semigroup
compactifications of S and T respectively , whether topological
extension of XS and XT exist and is semigroup compactification of
extension of S by T ?

Theorem

Let S and T be disjoint topological semigroups such that T has a
zero and Ω be a topological extension of S by T . Let (ψS ,XS) and
(ψT ,XT ) be topological semigroup compactifications of S and T
respectively such that XS ∩ XT = ∅. Then the following assertions
hold.

a) Topological extension XΩ of XS by XT exist.

b) Topological center Λ(Ω) is a topological extension of Λ(S)
by Λ(T ).

c) (ψΩ,XΩ) is a topological semigroup compactification of Ω
where ψ

Ω
|T = ψT , ψΩ

|S = ψS .
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Following theorem shows that topological semigroup
compactifications of S and T can be constructed by topological
semigroup compactifications of their topological extension.

Theorem

Let S and T be disjoint topological semigroups such that T has a
zero and Ω be a topological extension of S by T . Suppose
(ψΩ,XΩ) is a topological semigroup compactification of Ω. Then
there are topological semigroups compactifications
(ψS ,XS), (ψT ,XT ) of S and T respectively such that XΩ is a
topological extension of XS by XT .
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Applications.

An important class of semigroups which has been considered
from various points of view is completely 0-simple semigroup
and Brandt λ-extension.

In following we use topological extension technique to
characterizing compactification spaces of Brandt λ-extension .

Let G 0 = G ∪ {0} [resp. G ] be a group with zero [resp.
group], E and F be arbitrary nonempty sets.
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Let P be a E × F matrix over G 0 [resp. G ].

The set S = G × E × F ∪ {0} [resp. S = G × E × F ] is a
semigroup under the composition

(i , a, j) ◦ (l , b, k) =

{
(i , apjlb, k) ifpjl 6= 0
o otherwise

This semigroup is denoted by S = M(G ,P,E ,F ) and is called
Rees E × F matrix semigroup over G 0 [resp. G ] with the
sandwich matrix P.
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In special case, if P = I is an identity matrix, S = G 0 is
semigroup with zero, and E = F = Iλ is a set of cardinality
λ ≥ 1.

Define the semigroup operation on the set
Bλ(S) = M(S , I , Iλ, Iλ) by

(i , a, j) ◦ (l , b, k) =

{
(i , ab, k) if j = l
0, if j 6= l

and (i , a, j).0 = 0.(i , a, j) = 0.0 = 0 for all
a, b ∈ S , i , j , l , k ∈ Iλ.

The semigroup Bλ(S) is called Brandt λ-extension of S .
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Now let i → ui and j → vj be mappings of E and F to S such
that uk .uk = 1S , for all k ∈ λ.

Then mapping θ : Bλ(S)∗ = Bλ(S)− {0} → S by
θ(i , s, j) = ui suj is a partial homomorphism.
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Let S be a topological semigroup with zero and Brandt
λ-extension of S , Bλ(S) be equipped with product topology
then Bλ(S) is a topological semigroup.

Now θ : Bλ(S)∗ = Bλ(S)− {0} → S∗ = S − {0} by
θ(i , s, j) = ui suj is a continuous partial homomorphism.

Then there exists a topological extension Ω of S∗ by Bλ(S)
and Ω

S∗ ' Bλ(S).
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Corollary

Let S be a topological semigroup with zero and Ω be a topological
extension of S∗ = S − {0} by Bλ(S). Let (ψ,X ) be a topological
semigroup compactification of topological semigroup Ω. Then X

ρ
X

is a topological semigroup compactification of Bλ(S).



Corollary

Let S be a topological semigroup with zero and Ω be a topological
extension of S∗ = S − {0} by Bλ(S). Let (ψ,X ) be a topological
semigroup compactification of topological semigroup Ω. Then X

ρ
X

is a topological semigroup compactification of Bλ(S).



Corollary

Let S be a topological semigroup with zero and Ω be a topological
extension of S∗ = S − {0} by Bλ(S). Suppose (εBλ(S),Bλ(S)P)

and (εΩ,Ω
P) are the universal P-compactifications of Bλ(S) and

Ω respectively. Then Bλ(S)P ' ΩP

ρ
ΩP

, if

i) P is invariant under homomorphism,
ii) universal P-compactification is a topological semigroup.



Corollary

Let S be a topological semigroup with zero and Ω be a topological
extension of S∗ = S − {0} by Bλ(S). Let (εBλ(S),Bλ(S)sap) [resp.
(εBλ(S),Bλ(S)ap)] and (εΩ,Ω

sap) [resp. (εΩ,Ω
ap)] be the strongly

almost periodic compactifications [resp. almost periodic
compactifications ] of Bλ(S) and Ω respectively. Then
Bλ(S)sap ' Ωsap

ρ
Ωsap

[ resp. Bλ(S)ap ' Ωap

ρ
Ωap

].
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