Ideal extension of semigroups and their applications

Hamidreza Rahimi

rahimi@iauctb.ac.ir

Department of Mathematics, Islamic Azad University, Central Tehran Branch , Tehran, Iran

Let S and T be disjoint semigroups, S having an identity $\mathbf{1}_S$ and T having a zero element $\mathbf{0}$.

Let S and T be disjoint semigroups, S having an identity $\mathbf{1}_S$ and T having a zero element $\mathbf{0}$.

A semigroup Ω is called an [ideal] extension of S by T if it contains S as an ideal and if the Rees factor semigroup $\frac{\Omega}{S}$ is isomorphic to T, i.e. $\frac{\Omega}{S} \simeq T$.

Let S and T be disjoint semigroups, S having an identity $\mathbf{1}_S$ and T having a zero element $\mathbf{0}$.

A semigroup Ω is called an [ideal] extension of S by T if it contains S as an ideal and if the Rees factor semigroup $\frac{\Omega}{S}$ is isomorphic to T, i.e. $\frac{\Omega}{S} \simeq T$.

Ideal extension for topological semigroup as subdirect product of $\mathcal{S} \times \mathcal{T}$ was studied by Christoph in 1970.

Let S and T be disjoint semigroups, S having an identity $\mathbf{1}_S$ and T having a zero element $\mathbf{0}$.

A semigroup Ω is called an [ideal] extension of S by T if it contains S as an ideal and if the Rees factor semigroup $\frac{\Omega}{S}$ is isomorphic to T, i.e. $\frac{\Omega}{S} \simeq T$.

Ideal extension for topological semigroup as subdirect product of $S \times T$ was studied by Christoph in 1970.

In this talk we introduce ideal extension for topological semigroups using a new method, then we investigate the compactification spaces of these structures.

Let S and T be disjoint semigroups, S having an identity 1_S and T having a zero element 0.

A semigroup Ω is called an [ideal] extension of S by T if it contains S as an ideal and if the Rees factor semigroup $\frac{\Omega}{S}$ is isomorphic to T, i.e. $\frac{\Omega}{S} \simeq T$.

Ideal extension for topological semigroup as subdirect product of $S \times T$ was studied by Christoph in 1970.

In this talk we introduce ideal extension for topological semigroups using a new method, then we investigate the compactification spaces of these structures.

As a consequence, we use this result to characterize compactification spaces for Brandt λ -extension of topological semigroups.

• In this talk S and T are two disjoint semigroups, S having an identity 1_S , and T having zero 0

 In this talk S and T are two disjoint semigroups, S having an identity 1_S, and T having zero 0

Definition

Let S and T be disjoint topological semigroups, T having a zero element 0. A topological semigroup Ω is a topological extension of S by T if Ω contains S as an ideal and the Rees factor semigroup $\frac{\Omega}{S}$ is topologically isomorphic to T.

• If Ω is an ideal extension of topological semigroup S by T and Ω' , S' and T' are compactifications of Ω , S and T respectively, whether Ω' can naturally characterize by S' and T'.

• If Ω is an ideal extension of topological semigroup S by T and Ω' , S' and T' are compactifications of Ω , S and T respectively, whether Ω' can naturally characterize by S' and T'.

- If Ω is an ideal extension of topological semigroup S by T and Ω' , S' and T' are compactifications of Ω , S and T respectively, whether Ω' can naturally characterize by S' and T'.
- In especial case, results of this type are known by some authors, say for topological tensor product of semigroups, Sherier products of semigroups.

• A mapping $A \mapsto \overline{A}$ of $T^* = T - \{0\}$ into S is called partial homomorphism if $\overline{AB} = \overline{A} \, \overline{B}$, whenever $AB \neq 0$.

• A mapping $A \mapsto \overline{A}$ of $T^* = T - \{0\}$ into S is called partial homomorphism if $\overline{AB} = \overline{A} \, \overline{B}$, whenever $AB \neq 0$.

- A mapping $A \mapsto \overline{A}$ of $T^* = T \{0\}$ into S is called partial homomorphism if $\overline{AB} = \overline{A} \, \overline{B}$, whenever $AB \neq 0$.
- It is known that a partial homomorphism $A \to \overline{A}$ of the semigroup T^* into S determines an extension Ω of S by T as follows:

- A mapping $A \mapsto \overline{A}$ of $T^* = T \{0\}$ into S is called partial homomorphism if $\overline{AB} = \overline{A} \overline{B}$, whenever $AB \neq 0$.
- It is known that a partial homomorphism $A \to \overline{A}$ of the semigroup T^* into S determines an extension Ω of S by T as follows: For $A, B \in T$ and $s, t \in S$,

- A mapping $A \mapsto \overline{A}$ of $T^* = T \{0\}$ into S is called partial homomorphism if $\overline{AB} = \overline{A} \overline{B}$, whenever $AB \neq 0$.
- It is known that a partial homomorphism $A \to \overline{A}$ of the semigroup T^* into S determines an extension Ω of S by T as follows: For $A, B \in T$ and $s, t \in S$,

$$(P1) \quad AoB = \begin{cases} \frac{AB}{AB} & ifAB \neq 0 \\ \frac{B}{AB} & ifAB = 0 \end{cases}$$

- A mapping $A \mapsto \overline{A}$ of $T^* = T \{0\}$ into S is called partial homomorphism if $\overline{AB} = \overline{A} \overline{B}$, whenever $AB \neq 0$.
- It is known that a partial homomorphism $A \to \overline{A}$ of the semigroup T^* into S determines an extension Ω of S by T as follows: For $A, B \in T$ and $s, t \in S$,

$$(P1) \quad AoB = \begin{cases} \frac{AB}{AB} & ifAB \neq 0 \\ \frac{B}{AB} & ifAB = 0 \end{cases}$$

(P2)
$$Aos = \overline{A}s$$
, (P3) $soA = s\overline{A}$, (P4) $sot = st$. and every extension can be so constructed

The following theorem provides a general solution for the existence of topological extension of topological semigroups.

The following theorem provides a general solution for the existence of topological extension of topological semigroups.

$\mathsf{Theorem}$

Let S and T be disjoint topological semigroups such that T has a zero. Let $\theta: T^* = T - \{0\} \to S$ be continuous partial homomorphism. Then $\Omega = S \cup T^*$ with multiplication (P1, P2, P3, P4) is a topological extension of S by T. Conversely, every topological extension of topological semigroup S by topological semigroup T can be so constructed

(Sketch)

ullet Clearly, Ω is an extension of S by T.

- Clearly, Ω is an extension of S by T.
- Let

$$\mathfrak{U} = \{ v \subseteq \Omega \mid v \cap T \text{ and } v \cap S \text{ is open in } T \text{ and } S \text{ respectively } \}$$

- Clearly, Ω is an extension of S by T.
- Let $\mathfrak{U} = \{ v \subseteq \Omega \mid v \cap T \text{ and } v \cap S \text{ is open in } T \text{ and } S \text{ respectively } \}$
- $\bullet \ \Omega$ is a topological semigroup with identity.

- Clearly, Ω is an extension of S by T.
- Let $\mathfrak{U} = \{ v \subseteq \Omega \mid v \cap T \text{ and } v \cap S \text{ is open in } T \text{ and } S \text{ respectively } \}$
- ullet Ω is a topological semigroup with identity.
- Suppose τ be the equivalence relation generated by $\tau = \{(u, su') \mid s \in S, u, u' \in \Omega\}$

- Clearly, Ω is an extension of S by T.
- Let $\mathfrak{U} = \{ v \subseteq \Omega \mid v \cap T \text{ and } v \cap S \text{ is open in } T \text{ and } S \text{ respectively } \}$
- ullet Ω is a topological semigroup with identity.
- Suppose τ be the equivalence relation generated by $\tau = \{(u, su') \mid s \in S, u, u' \in \Omega\}$
- $\rho_{\Omega} = \{(x,y) \in \Omega \times \Omega \mid (uxv,uyv) \in \tau, \textit{for all } u,v \in \Omega\}.$ ρ_{Ω} is the largest congruence on $\Omega \times \Omega$ contained in τ , and $\frac{\Omega}{\rho_{\Omega}} \simeq \frac{\Omega}{S} \simeq T$.

Structure of compactification of ideal extensions of topological semigroups

Structure of compactification of ideal extensions of topological semigroups

• Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T.

Structure of compactification of ideal extensions of topological semigroups

- Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T.
- Let (ψ, X) be a topological semigroup compactification of Ω and τ_X be the equivalence relation generated by $\{(x, \psi(s)y) \mid x, y \in X, s \in S\}$ and ρ_X be the closure of the largest congruence on $X \times X$ contained in τ_X .

Theorem

Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T. Let (ψ, X) be a topological semigroup compactification of Ω . Then $\frac{X}{\rho_X}$ is a topological semigroup compactification of $\frac{\Omega}{S} \simeq T$.

$\mathsf{Theorem}$

Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T. Let $(\varepsilon_T, T^{\mathcal{P}})$ and $(\varepsilon_\Omega, \Omega^{\mathcal{P}})$ be the universal \mathcal{P} -compactifications of T and Ω respectively. Then $T^{\mathcal{P}} \simeq \frac{\Omega^{\mathcal{P}}}{\rho_{\Omega^{\mathcal{P}}}}$ if

- i) \mathcal{P} is invariant under homomorphism,
- ii) universal \mathcal{P} -compactification is a topological semigroup.

Corollary

Let Ω be a topological extension of topological semigroup S by topological semigroup T. Let (ε_s, S^{sap}) , $(\varepsilon_\Omega, \Omega^{sap})$ [resp. (ε_s, S^{ap}) , $(\varepsilon_\Omega, \Omega^{ap})$] be the strongly almost periodic compactifications [resp. almost periodic compactifications] of S and Ω , respectively. Then $T^{sap} \simeq \frac{\Omega^{sap}}{\rho_{\Omega sap}}$ [resp. $T^{ap} \simeq \frac{\Omega^{ap}}{\rho_{\Omega ap}}$].

Question. If X_S and X_T are topological semigroup compactifications of S and T respectively , whether topological extension of X_S and X_T exist and is semigroup compactification of extension of S by T?

Question. If X_S and X_T are topological semigroup compactifications of S and T respectively , whether topological extension of X_S and X_T exist and is semigroup compactification of extension of S by T?

Theorem

Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T. Let (ψ_S, X_S) and (ψ_T, X_T) be topological semigroup compactifications of S and T respectively such that $X_S \cap X_T = \emptyset$. Then the following assertions hold.

- a) Topological extension X_{Ω} of X_S by X_T exist.
- b) Topological center $\Lambda(\Omega)$ is a topological extension of $\Lambda(S)$ by $\Lambda(T)$.
- c) $(\psi_{\Omega}, X_{\Omega})$ is a topological semigroup compactification of Ω where $\psi_{\Omega}|_{T} = \psi_{T}, \psi_{\Omega}|_{S} = \psi_{S}$.

Following theorem shows that topological semigroup compactifications of S and T can be constructed by topological semigroup compactifications of their topological extension.

Following theorem shows that topological semigroup compactifications of S and T can be constructed by topological semigroup compactifications of their topological extension.

Theorem

Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T. Suppose $(\psi_{\Omega}, X_{\Omega})$ is a topological semigroup compactification of Ω . Then there are topological semigroups compactifications (ψ_S, X_S) , (ψ_T, X_T) of S and T respectively such that X_{Ω} is a topological extension of X_S by X_T .

• An important class of semigroups which has been considered from various points of view is completely 0-simple semigroup and Brandt λ -extension.

• An important class of semigroups which has been considered from various points of view is completely 0-simple semigroup and Brandt λ -extension.

- An important class of semigroups which has been considered from various points of view is completely 0-simple semigroup and Brandt λ -extension.
- In following we use topological extension technique to characterizing compactification spaces of Brandt λ -extension .

- An important class of semigroups which has been considered from various points of view is completely 0-simple semigroup and Brandt λ -extension.
- In following we use topological extension technique to characterizing compactification spaces of Brandt λ -extension .
- Let $G^0 = G \cup \{0\}$ [resp. G] be a group with zero [resp. group], E and F be arbitrary nonempty sets.

• Let P be a $E \times F$ matrix over G^0 [resp. G].

- Let P be a $E \times F$ matrix over G^0 [resp. G].
- The set $S = G \times E \times F \cup \{0\}$ [resp. $S = G \times E \times F$] is a semigroup under the composition

$$(i,a,j) \circ (l,b,k) = \left\{ egin{array}{ll} (i,ap_{jl}b,k) & \textit{if}p_{jl}
eq 0 \\ o & \textit{otherwise} \end{array}
ight.$$

- Let P be a $E \times F$ matrix over G^0 [resp. G].
- The set $S = G \times E \times F \cup \{0\}$ [resp. $S = G \times E \times F$] is a semigroup under the composition

$$(i,a,j)\circ (l,b,k)=\left\{egin{array}{ll} (i,ap_{jl}b,k) & \textit{if}p_{jl}
eq 0 \ \textit{o} & \textit{otherwise} \end{array}
ight.$$

• This semigroup is denoted by S = M(G, P, E, F) and is called Rees $E \times F$ matrix semigroup over G^0 [resp. G] with the sandwich matrix P.

• In special case, if P=I is an identity matrix, $S=G^0$ is semigroup with zero, and $E=F=I_\lambda$ is a set of cardinality $\lambda>1$.

- In special case, if P=I is an identity matrix, $S=G^0$ is semigroup with zero, and $E=F=I_\lambda$ is a set of cardinality $\lambda \geq 1$.
- Define the semigroup operation on the set $B_{\lambda}(S) = M(S, I, I_{\lambda}, I_{\lambda})$ by

$$(i,a,j)\circ(l,b,k)=\left\{ egin{array}{ll} (i,ab,k) & \mbox{if }j=l\ 0, & \mbox{if }j
eq l \end{array}
ight.$$

and
$$(i, a, j).0 = 0.(i, a, j) = 0.0 = 0$$
 for all $a, b \in S, i, j, l, k \in I_{\lambda}$.

- In special case, if P=I is an identity matrix, $S=G^0$ is semigroup with zero, and $E=F=I_\lambda$ is a set of cardinality $\lambda>1$.
- Define the semigroup operation on the set $B_{\lambda}(S) = M(S, I, I_{\lambda}, I_{\lambda})$ by

$$(i,a,j)\circ(I,b,k)=\left\{ egin{array}{ll} (i,ab,k) & \mbox{if }j=I\ 0, & \mbox{if }j
eq I \end{array}
ight.$$

and
$$(i, a, j).0 = 0.(i, a, j) = 0.0 = 0$$
 for all $a, b \in S, i, j, l, k \in I_{\lambda}$.

• The semigroup $B_{\lambda}(S)$ is called Brandt λ -extension of S.

• Now let $i \to u_i$ and $j \to v_j$ be mappings of E and F to S such that $u_k.u_k = 1_S$, for all $k \in \lambda$.

- Now let $i \to u_i$ and $j \to v_j$ be mappings of E and F to S such that $u_k.u_k = 1_S$, for all $k \in \lambda$.
- Then mapping $\theta: B_{\lambda}(S)^* = B_{\lambda}(S) \{0\} \to S$ by $\theta(i, s, j) = u_i s u_j$ is a partial homomorphism.

• Let S be a topological semigroup with zero and Brandt λ -extension of S, $B_{\lambda}(S)$ be equipped with product topology then $B_{\lambda}(S)$ is a topological semigroup.

- Let S be a topological semigroup with zero and Brandt λ -extension of S, $B_{\lambda}(S)$ be equipped with product topology then $B_{\lambda}(S)$ is a topological semigroup.
- Now $\theta: B_{\lambda}(S)^* = B_{\lambda}(S) \{0\} \rightarrow S^* = S \{0\}$ by $\theta(i, s, j) = u_i s u_j$ is a continuous partial homomorphism.

- Let S be a topological semigroup with zero and Brandt λ -extension of S, $B_{\lambda}(S)$ be equipped with product topology then $B_{\lambda}(S)$ is a topological semigroup.
- Now $\theta: B_{\lambda}(S)^* = B_{\lambda}(S) \{0\} \rightarrow S^* = S \{0\}$ by $\theta(i, s, j) = u_i s u_i$ is a continuous partial homomorphism.
- Then there exists a topological extension Ω of S^* by $B_{\lambda}(S)$ and $\frac{\Omega}{S^*} \simeq B_{\lambda}(S)$.

Corollary

Let S be a topological semigroup with zero and Ω be a topological extension of $S^* = S - \{0\}$ by $B_{\lambda}(S)$. Let (ψ, X) be a topological semigroup compactification of topological semigroup Ω . Then $\frac{X}{\rho_X}$ is a topological semigroup compactification of $B_{\lambda}(S)$.

Corollary

Let S be a topological semigroup with zero and Ω be a topological extension of $S^* = S - \{0\}$ by $B_{\lambda}(S)$. Suppose $(\varepsilon_{B_{\lambda}(S)}, B_{\lambda}(S)^P)$ and $(\varepsilon_{\Omega}, \Omega^P)$ are the universal P-compactifications of $B_{\lambda}(S)$ and Ω respectively. Then $B_{\lambda}(S)^P \simeq \frac{\Omega^P}{\rho_{\Omega P}}$, if

- i) P is invariant under homomorphism,
- ii) universal P-compactification is a topological semigroup.

Corollary

Let S be a topological semigroup with zero and Ω be a topological extension of $S^* = S - \{0\}$ by $B_{\lambda}(S)$. Let $(\varepsilon_{B_{\lambda}(S)}, B_{\lambda}(S)^{sap})$ [resp. $(\varepsilon_{B_{\lambda}(S)}, B_{\lambda}(S)^{ap})$] and $(\varepsilon_{\Omega}, \Omega^{sap})$ [resp. $(\varepsilon_{\Omega}, \Omega^{ap})$] be the strongly almost periodic compactifications [resp. almost periodic compactifications] of $B_{\lambda}(S)$ and Ω respectively. Then $B_{\lambda}(S)^{sap} \simeq \frac{\Omega^{sap}}{\rho_{\Omega sap}}$ [resp. $B_{\lambda}(S)^{ap} \simeq \frac{\Omega^{ap}}{\rho_{\Omega sap}}$].

Thank you for your attention