Ideal extension of semigroups and their applications

Hamidreza Rahimi
rahimi@iauctb.ac.ir

Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran
Abstract.

Let S and T be disjoint semigroups, S having an identity 1_S and T having a zero element 0. A semigroup Ω is called an ideal extension of S by T if it contains S as an ideal and if the Rees factor semigroup Ω/S is isomorphic to T, i.e. $\Omega/S \cong T$.

Ideal extension for topological semigroup as subdirect product of $S \times T$ was studied by Christoph in 1970. In this talk we introduce ideal extension for topological semigroups using a new method, then we investigate the compactification spaces of these structures. As a consequence, we use this result to characterize compactification spaces for Brandt λ-extension of topological semigroups.
Abstract.

Let S and T be disjoint semigroups, S having an identity 1_S and T having a zero element 0. A semigroup Ω is called an ideal extension of S by T if it contains S as an ideal and if the Rees factor semigroup Ω / S is isomorphic to T, i.e. $\Omega / S \simeq T$.

Ideal extension for topological semigroup as subdirect product of $S \times T$ was studied by Christoph in 1970. In this talk we introduce ideal extension for topological semigroups using a new method, then we investigate the compactification spaces of these structures. As a consequence, we use this result to characterize compactification spaces for Brandt λ-extension of topological semigroups.
Abstract.
Let S and T be disjoint semigroups, S having an identity 1_S and T having a zero element 0.
Abstract.
Let S and T be disjoint semigroups, S having an identity 1_S and T having a zero element 0.
A semigroup Ω is called an [ideal] extension of S by T if it contains S as an ideal and if the Rees factor semigroup $\frac{\Omega}{S}$ is isomorphic to T, i.e. $\frac{\Omega}{S} \simeq T$.
Abstract.
Let S and T be disjoint semigroups, S having an identity 1_S and T having a zero element 0.
A semigroup Ω is called an [ideal] extension of S by T if it contains S as an ideal and if the Rees factor semigroup Ω_S is isomorphic to T, i.e. $\frac{\Omega}{S} \simeq T$.
Ideal extension for topological semigroup as subdirect product of $S \times T$ was studied by Christoph in 1970.
Abstract.
Let S and T be disjoint semigroups, S having an identity 1_S and T having a zero element 0.
A semigroup Ω is called an [ideal] extension of S by T if it contains S as an ideal and if the Rees factor semigroup $\frac{\Omega}{S}$ is isomorphic to T, i.e. $\frac{\Omega}{S} \simeq T$.
Ideal extension for topological semigroup as subdirect product of $S \times T$ was studied by Christoph in 1970.
In this talk we introduce ideal extension for topological semigroups using a new method, then we investigate the compactification spaces of these structures.
Abstract.
Let S and T be disjoint semigroups, S having an identity 1_S and T having a zero element 0.
A semigroup Ω is called an [ideal] extension of S by T if it contains S as an ideal and if the Rees factor semigroup $\frac{\Omega}{S}$ is isomorphic to T, i.e. $\frac{\Omega}{S} \simeq T$.
Ideal extension for topological semigroup as subdirect product of $S \times T$ was studied by Christoph in 1970.
In this talk we introduce ideal extension for topological semigroups using a new method, then we investigate the compactification spaces of these structures.
As a consequence, we use this result to characterize compactification spaces for Brandt λ-extension of topological semigroups.
In this talk, S and T are two disjoint semigroups, S having an identity 1_S, and T having zero 0_T.

Definition

Let S and T be disjoint topological semigroups, T having a zero element 0_T. A topological semigroup Ω is a topological extension of S by T if Ω contains S as an ideal and the Rees factor semigroup Ω/S is topologically isomorphic to T.
In this talk S and T are two disjoint semigroups, S having an identity 1_S, and T having zero 0.
In this talk S and T are two disjoint semigroups, S having an identity 1_S, and T having zero 0.

Definition

Let S and T be disjoint topological semigroups, T having a zero element 0. A topological semigroup Ω is a topological extension of S by T if Ω contains S as an ideal and the Rees factor semigroup Ω_S is topologically isomorphic to T.
Motivation.
Motivation.

If Ω is an ideal extension of topological semigroup S by T and Ω', S' and T' are compactifications of Ω, S and T respectively, whether Ω' can naturally characterize by S' and T'. In especial case, results of this type are known by some authors, say for topological tensor product of semigroups, Sherier products of semigroups.
Motivation.

- If Ω is an ideal extension of topological semigroup S by T and Ω', S' and T' are compactifications of Ω, S and T respectively, whether Ω' can naturally characterize by S' and T'.
Motivation.

- If Ω is an ideal extension of topological semigroup S by T and Ω', S' and T' are compactifications of Ω, S and T respectively, whether Ω' can naturally characterize by S' and T'.

- In especial case, results of this type are known by some authors, say for topological tensor product of semigroups, Sherier products of semigroups.
Structure of ideal extension of semigroups for discrete case.

A mapping $A \mapsto \overline{A}$ of $T^* = T - \{0\}$ into S is called partial homomorphism if $A B = A B$, whenever $A B \neq 0$.

It is known that a partial homomorphism $A \mapsto A$ of the semigroup T^* into S determines an extension Ω of S by T as follows:

For $A, B \in T$ and $s, t \in S$,

1. (P_1) $A o B = \begin{cases} AB & \text{if } AB \neq 0 \\ A B & \text{if } AB = 0 \end{cases}$
2. (P_2) $A o s = A s$
3. (P_3) $s o A = s A$
4. (P_4) $s o t = st$

and every extension can be so constructed.
Structure of ideal extension of semigroups for discrete case.

A mapping $A \mapsto \bar{A}$ of $T^* = T - \{0\}$ into S is called partial homomorphism if $AB = A B$, whenever $AB \neq 0$.

It is known that a partial homomorphism $A \rightarrow A$ of the semigroup T^* into S determines an extension Ω of S by T as follows:

For $A, B \in T$ and $s, t \in S$,

$(P_1) \quad A o B = \begin{cases} AB & \text{if } AB \neq 0 \\ A & \text{if } AB = 0 \end{cases}$

$(P_2) \quad A o s = As$

$(P_3) \quad s o A = sA$

$(P_4) \quad s o t = st$

and every extension can be so constructed.
Structure of ideal extension of semigroups for discrete case.

A mapping $A \mapsto \bar{A}$ of $T^* = T - \{0\}$ into S is called partial homomorphism if $\bar{A}B = \bar{A} \bar{B}$, whenever $AB \neq 0$. It is known that a partial homomorphism $A \mapsto \bar{A}$ of the semigroup T^* into S determines an extension Ω of S by T as follows:

- (P_1) $\bar{A}B = \bar{AB}$ if $AB \neq 0$
- (P_2) $\bar{A}s = \bar{A}s$
- (P_3) $s\bar{A} = \bar{sA}$
- (P_4) $sot = st$

and every extension can be so constructed.
Structure of ideal extension of semigroups for discrete case.

- A mapping $A \mapsto \bar{A}$ of $T^* = T - \{0\}$ into S is called partial homomorphism if $\bar{A}B = \bar{A}\bar{B}$, whenever $AB \neq 0$.
Structure of ideal extension of semigroups for discrete case.

A mapping \(A \mapsto \bar{A} \) of \(T^* = T - \{0\} \) into \(S \) is called partial homomorphism if \(\bar{A}B = \bar{A}\bar{B} \), whenever \(AB \neq 0 \).

It is known that a partial homomorphism \(A \mapsto \bar{A} \) of the semigroup \(T^* \) into \(S \) determines an extension \(\Omega \) of \(S \) by \(T \) as follows:
Structure of ideal extension of semigroups for discrete case.

- A mapping \(A \mapsto \bar{A} \) of \(T^* = T - \{0\} \) into \(S \) is called partial homomorphism if \(\bar{AB} = \bar{A} \bar{B} \), whenever \(AB \neq 0 \).

- It is known that a partial homomorphism \(A \mapsto \bar{A} \) of the semigroup \(T^* \) into \(S \) determines an extension \(\Omega \) of \(S \) by \(T \) as follows: For \(A, B \in T \) and \(s, t \in S \),
Structure of ideal extension of semigroups for discrete case.

- A mapping $A \mapsto \bar{A}$ of $T^* = T - \{0\}$ into S is called partial homomorphism if $\bar{A}B = \bar{A} \bar{B}$, whenever $AB \neq 0$.

- It is known that a partial homomorphism $A \mapsto \bar{A}$ of the semigroup T^* into S determines an extension Ω of S by T as follows: For $A, B \in T$ and $s, t \in S$,

\[
(P1) \quad AoB = \begin{cases}
 AB & \text{if} AB \neq 0 \\
 \bar{A}B & \text{if} AB = 0
\end{cases}
\]
Structure of ideal extension of semigroups for discrete case.

- A mapping $A \mapsto \overline{A}$ of $T^* = T - \{0\}$ into S is called partial homomorphism if $\overline{AB} = \overline{A} \overline{B}$, whenever $AB \neq 0$.

- It is known that a partial homomorphism $A \rightarrow \overline{A}$ of the semigroup T^* into S determines an extension Ω of S by T as follows: For $A, B \in T$ and $s, t \in S$,

\[
(P1) \quad AoB = \begin{cases}
AB & \text{if} AB \neq 0 \\
\overline{A} \overline{B} & \text{if} AB = 0
\end{cases}
\]

\[
(P2) \quad Aos = \overline{As}, \quad (P3) \quad soA = s\overline{A}, \quad (P4) \quad sot = st.
\]

and every extension can be so constructed.
The following theorem provides a general solution for the existence of topological extension of topological semigroups.

Theorem

Let S and T be disjoint topological semigroups such that T has a zero. Let \(\theta : T^* = T - \{0\} \to S \) be continuous partial homomorphism. Then $\Omega = S \cup T^*$ with multiplication \((P_1, P_2, P_3, P_4)\) is a topological extension of S by T. Conversely, every topological extension of topological semigroup S by topological semigroup T can be so constructed.
The following theorem provides a general solution for the existence of topological extension of topological semigroups.

Theorem

Let S and T be disjoint topological semigroups such that T has a zero. Let $\theta : T^* = T - \{0\} \to S$ be continuous partial homomorphism. Then $\Omega = S \cup T^*$ with multiplication $(P1, P2, P3, P4)$ is a topological extension of S by T. Conversely, every topological extension of topological semigroup S by topological semigroup T can be so constructed.
Proof.

(Sketch)

- Clearly, Ω is an extension of S by T.
Proof.

(Sketch)
- Clearly, Ω is an extension of S by T.
- Let
 $$\mathcal{U} = \{ v \subseteq \Omega \mid v \cap T \text{ and } v \cap S \text{ is open in } T \text{ and } S \text{ respectively} \}$$
Proof.

(Sketch)

- Clearly, Ω is an extension of S by T.
- Let $\mathcal{U} = \{ v \subseteq \Omega \mid v \cap T$ and $v \cap S$ is open in T and S respectively $\}$
- Ω is a topological semigroup with identity.
Proof.

(Sketch)

- Clearly, Ω is an extension of S by T.
- Let $\mathcal{U} = \{ v \subseteq \Omega \mid v \cap T \text{ and } v \cap S \text{ is open in } T \text{ and } S \text{ respectively} \}$
- Ω is a topological semigroup with identity.
- Suppose τ be the equivalence relation generated by $\tau = \{(u, su') \mid s \in S, u, u' \in \Omega\}$
Proof.

(Sketch)

- Clearly, Ω is an extension of S by T.
- Let
 \[\mathcal{U} = \{ v \subseteq \Omega \mid v \cap T \text{ and } v \cap S \text{ is open in } T \text{ and } S \text{ respectively} \} \]
- Ω is a topological semigroup with identity.
- Suppose τ be the equivalence relation generated by
 \[\tau = \{(u, su') \mid s \in S, u, u' \in \Omega\} \]
- $\rho_\Omega = \{(x, y) \in \Omega \times \Omega \mid (uxv, uyv) \in \tau, \text{ for all } u, v \in \Omega\}$. ρ_Ω is the largest congruence on $\Omega \times \Omega$ contained in τ, and $\frac{\Omega}{\rho_\Omega} \simeq \frac{\Omega}{S} \simeq T$.

Structure of compactification of ideal extensions of topological semigroups
Structure of compactification of ideal extensions of topological semigroups

Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T.
Structure of compactification of ideal extensions of topological semigroups

Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T.

Let (ψ, \mathcal{X}) be a topological semigroup compactification of Ω and $\tau_\mathcal{X}$ be the equivalence relation generated by $\{(x, \psi(s)y) \mid x, y \in \mathcal{X}, s \in S\}$ and $\rho_\mathcal{X}$ be the closure of the largest congruence on $\mathcal{X} \times \mathcal{X}$ contained in $\tau_\mathcal{X}$.
Theorem

Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T. Let (ψ, X) be a topological semigroup compactification of Ω. Then $\frac{X}{\rho_X}$ is a topological semigroup compactification of $\frac{\Omega}{S} \simeq T$.
Theorem

Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T. Let $(\varepsilon_T, T^\mathcal{P})$ and $(\varepsilon_\Omega, \Omega^\mathcal{P})$ be the universal \mathcal{P}-compactifications of T and Ω respectively. Then $T^\mathcal{P} \simeq \frac{\Omega^\mathcal{P}}{\rho_{\Omega^\mathcal{P}}}$ if

i) \mathcal{P} is invariant under homomorphism,

ii) universal \mathcal{P}-compactification is a topological semigroup.
Corollary

Let Ω be a topological extension of topological semigroup S by topological semigroup T. Let $(\varepsilon_s, S_{sap}^s)$, $(\varepsilon_\Omega, \Omega_{sap}^s)$ [resp. $(\varepsilon_s, S_{ap}^s)$, $(\varepsilon_\Omega, \Omega_{ap}^s)$] be the strongly almost periodic compactifications [resp. almost periodic compactifications] of S and Ω, respectively. Then $T_{sap}^s \sim \frac{\Omega_{sap}^s}{\rho_{\Omega_{sap}^s}}$ [resp. $T_{ap}^s \sim \frac{\Omega_{ap}^s}{\rho_{\Omega_{ap}^s}}$].
Question. If \(X_S \) and \(X_T \) are topological semigroup compactifications of \(S \) and \(T \) respectively, whether topological extension of \(X_S \) and \(X_T \) exist and is semigroup compactification of extension of \(S \) by \(T \)?

Theorem Let \(S \) and \(T \) be disjoint topological semigroups such that \(T \) has a zero and \(\Omega \) be a topological extension of \(S \) by \(T \).

Let \((\psi_S, X_S) \) and \((\psi_T, X_T) \) be topological semigroup compactifications of \(S \) and \(T \) respectively such that \(X_S \cap X_T = \emptyset \). Then the following assertions hold.

a) Topological extension \(X_\Omega \) of \(X_S \) by \(X_T \) exist.

b) Topological center \(\Lambda(\Omega) \) is a topological extension of \(\Lambda(S) \) by \(\Lambda(T) \).

c) \((\psi_\Omega, X_\Omega) \) is a topological semigroup compactification of \(\Omega \) where \(\psi_\Omega|_T = \psi_T \), \(\psi_\Omega|_S = \psi_S \).
Question. If X_S and X_T are topological semigroup compactifications of S and T respectively, whether topological extension of X_S and X_T exist and is semigroup compactification of extension of S by T?
Question. If X_S and X_T are topological semigroup compactifications of S and T respectively, whether topological extension of X_S and X_T exist and is semigroup compactification of extension of S by T?

Theorem

Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T. Let (ψ_S, X_S) and (ψ_T, X_T) be topological semigroup compactifications of S and T respectively such that $X_S \cap X_T = \emptyset$. Then the following assertions hold.

- **a)** Topological extension X_Ω of X_S by X_T exist.
- **b)** Topological center $\Lambda(\Omega)$ is a topological extension of $\Lambda(S)$ by $\Lambda(T)$.
- **c)** (ψ_Ω, X_Ω) is a topological semigroup compactification of Ω where $\psi_\Omega|_T = \psi_T$, $\psi_\Omega|_S = \psi_S$.

Following theorem shows that topological semigroup compactifications of \(S \) and \(T \) can be constructed by topological semigroup compactifications of their topological extension.
Following theorem shows that topological semigroup compactifications of S and T can be constructed by topological semigroup compactifications of their topological extension.

Theorem

*Let S and T be disjoint topological semigroups such that T has a zero and Ω be a topological extension of S by T. Suppose $(\psi_{\Omega}, X_{\Omega})$ is a topological semigroup compactification of Ω. Then there are topological semigroups compactifications (ψ_{S}, X_{S}), (ψ_{T}, X_{T}) of S and T respectively such that X_{Ω} is a topological extension of X_{S} by X_{T}.***
Applications.
Applications.

- An important class of semigroups which has been considered from various points of view is completely 0-simple semigroup and Brandt λ-extension.
Applications.

- An important class of semigroups which has been considered from various points of view is completely 0-simple semigroup and Brandt \(\lambda \)-extension.
Applications.

- An important class of semigroups which has been considered from various points of view is completely 0-simple semigroup and Brandt λ-extension.

- In following we use topological extension technique to characterizing compactification spaces of Brandt λ-extension.
Applications.

- An important class of semigroups which has been considered from various points of view is completely 0-simple semigroup and Brandt λ-extension.

- In following we use topological extension technique to characterizing compactification spaces of Brandt λ-extension.

- Let $G^0 = G \cup \{0\}$ [resp. G] be a group with zero [resp. group], E and F be arbitrary nonempty sets.
Let P be a $E \times F$ matrix over G_0 [resp. G]. The set $S = G \times E \times F \cup \{0\}$ [resp. $S = G \times E \times F$] is a semigroup under the composition $(i, a, j) \circ (l, b, k) = \{(i, apjlb, k) \quad \text{if } pjl \neq 0 \quad \text{o otherwise}\}$. This semigroup is denoted by $S = M(G, P, E, F)$ and is called Rees $E \times F$ matrix semigroup over G_0 [resp. G] with the sandwich matrix P.
Let P be a $E \times F$ matrix over G^0 [resp. G].
Let P be a $E \times F$ matrix over G^0 [resp. G].

The set $S = G \times E \times F \cup \{0\}$ [resp. $S = G \times E \times F$] is a semigroup under the composition

$$(i, a, j) \circ (l, b, k) = \begin{cases} (i, ap_{jl}b, k) & \text{if } p_{jl} \neq 0 \\ i, a, j & \text{otherwise} \end{cases}$$
Let P be a $E \times F$ matrix over G^0 [resp. G].

The set $S = G \times E \times F \cup \{0\}$ [resp. $S = G \times E \times F$] is a semigroup under the composition

$$(i, a, j) \circ (l, b, k) = \begin{cases} (i, ap_{j,l}b, k) & \text{if } p_{j,l} \neq 0 \\ o & \text{otherwise} \end{cases}$$

This semigroup is denoted by $S = M(G, P, E, F)$ and is called Rees $E \times F$ matrix semigroup over G^0 [resp. G] with the sandwich matrix P.
In special case, if $P = I$ is an identity matrix, $S = G_0$ is a semigroup with zero, and $E = F = I_\lambda$ is a set of cardinality $\lambda \geq 1$.

Define the semigroup operation on the set $B_\lambda(S) = M(S, I, I_\lambda, I_\lambda)$ by

$$(i, a, j) \circ (l, b, k) = \begin{cases} (i, ab, k) & \text{if } j = l, \\ 0 & \text{if } j \neq l \text{ and } (i, a, j) \neq (i, a, 0) = 0 = (i, a, 0). \end{cases}$$

The semigroup $B_\lambda(S)$ is called Brandt λ-extension of S.
In special case, if $P = I$ is an identity matrix, $S = G^0$ is semigroup with zero, and $E = F = I_\lambda$ is a set of cardinality $\lambda \geq 1$.
In special case, if $P = I$ is an identity matrix, $S = G^0$ is semigroup with zero, and $E = F = I_\lambda$ is a set of cardinality $\lambda \geq 1$.

Define the semigroup operation on the set $B_\lambda(S) = M(S, I, I_\lambda, I_\lambda)$ by

$$
(i, a, j) \circ (l, b, k) = \begin{cases}
(i, ab, k) & \text{if } j = l \\
0 & \text{if } j \neq l
\end{cases}
$$

and $(i, a, j).0 = 0.(i, a, j) = 0.0 = 0$ for all $a, b \in S, i, j, l, k \in I_\lambda$.

The semigroup $B_\lambda(S)$ is called Brandt λ-extension of S.

In special case, if \(P = I \) is an identity matrix, \(S = G^0 \) is semigroup with zero, and \(E = F = I_\lambda \) is a set of cardinality \(\lambda \geq 1 \).

Define the semigroup operation on the set \(B_\lambda(S) = M(S, I, I_\lambda, I_\lambda) \) by

\[
(i, a, j) \circ (l, b, k) = \begin{cases}
(i, ab, k) & \text{if } j = l \\
0, & \text{if } j \neq l
\end{cases}
\]

and \((i, a, j).0 = 0.(i, a, j) = 0.0 = 0\) for all \(a, b \in S, i, j, l, k \in I_\lambda \).

The semigroup \(B_\lambda(S) \) is called Brandt \(\lambda \)-extension of \(S \).
Now let $i \to u_i$ and $j \to v_j$ be mappings of E and F to S such that $u_k \cdot u_k = 1_S$, for all $k \in \lambda$. Then mapping $\theta: B_\lambda(S) \to S$ by $\theta(i, s, j) = u_i s u_j$ is a partial homomorphism.
Now let $i \to u_i$ and $j \to v_j$ be mappings of E and F to S such that $u_k.u_k = 1_S$, for all $k \in \lambda$.
Now let $i \rightarrow u_i$ and $j \rightarrow v_j$ be mappings of E and F to S such that $u_k.u_k = 1_S$, for all $k \in \lambda$.

Then mapping $\theta : B_\lambda(S)^* = B_\lambda(S) - \{0\} \rightarrow S$ by $\theta(i, s, j) = u_i su_j$ is a partial homomorphism.
Let S be a topological semigroup with zero and Brandt λ-extension of S, $B_\lambda(S)$ be equipped with product topology then $B_\lambda(S)$ is a topological semigroup.

Now $\theta : B_\lambda(S) \ast = B_\lambda(S) - \{0\} \to S \ast = S - \{0\}$ by $\theta((i,s,j)) = u^isu^j$ is a continuous partial homomorphism.

Then there exists a topological extension Ω of $S \ast$ by $B_\lambda(S)$ and $\Omega S \ast \simeq B_\lambda(S)$.
Let \(S \) be a topological semigroup with zero and Brandt \(\lambda \)-extension of \(S \), \(B_\lambda(S) \) be equipped with product topology then \(B_\lambda(S) \) is a topological semigroup.
Let S be a topological semigroup with zero and Brandt λ-extension of S, $B_\lambda(S)$ be equipped with product topology then $B_\lambda(S)$ is a topological semigroup.

Now $\theta : B_\lambda(S)^* = B_\lambda(S) - \{0\} \to S^* = S - \{0\}$ by $\theta(i, s, j) = u_i su_j$ is a continuous partial homomorphism.
Let S be a topological semigroup with zero and Brandt λ-extension of S, $B_\lambda(S)$ be equipped with product topology then $B_\lambda(S)$ is a topological semigroup.

Now $\theta : B_\lambda(S)^* = B_\lambda(S) - \{0\} \rightarrow S^* = S - \{0\}$ by $\theta(i, s, j) = u_i su_j$ is a continuous partial homomorphism.

Then there exists a topological extension Ω of S^* by $B_\lambda(S)$ and $\frac{\Omega}{S^*} \simeq B_\lambda(S)$.
Corollary

Let S be a topological semigroup with zero and Ω be a topological extension of $S^* = S - \{0\}$ by $B_\lambda(S)$. Let (ψ, X) be a topological semigroup compactification of topological semigroup Ω. Then $X_\rho X$ is a topological semigroup compactification of $B_\lambda(S)$.
Corollary

Let S be a topological semigroup with zero and Ω be a topological extension of $S^* = S - \{0\}$ by $B_\lambda(S)$. Let (ψ, X) be a topological semigroup compactification of topological semigroup Ω. Then $\frac{X}{\rho_X}$ is a topological semigroup compactification of $B_\lambda(S)$.
Corollary

Let S be a topological semigroup with zero and Ω be a topological extension of $S^* = S - \{0\}$ by $B_\lambda(S)$. Suppose $(\varepsilon_{B_\lambda(S)}, B_\lambda(S)^P)$ and $(\varepsilon_\Omega, \Omega^P)$ are the universal P-compactifications of $B_\lambda(S)$ and Ω respectively. Then $B_\lambda(S)^P \simeq \frac{\Omega^P}{\rho_{\Omega^P}}$, if

i) P is invariant under homomorphism,

ii) universal P-compactification is a topological semigroup.
Corollary

Let S be a topological semigroup with zero and Ω be a topological extension of $S^* = S - \{0\}$ by $B_\lambda(S)$. Let $(\varepsilon_{B_\lambda(S)}, B_\lambda(S)^{sap})$ [resp. $(\varepsilon_{B_\lambda(S)}, B_\lambda(S)^{ap})$] and $(\varepsilon_\Omega, \Omega^{sap})$ [resp. $(\varepsilon_\Omega, \Omega^{ap})$] be the strongly almost periodic compactifications [resp. almost periodic compactifications] of $B_\lambda(S)$ and Ω respectively. Then $B_\lambda(S)^{sap} \simeq \frac{\Omega^{sap}}{\rho_{\Omega^{sap}}}$ [resp. $B_\lambda(S)^{ap} \simeq \frac{\Omega^{ap}}{\rho_{\Omega^{ap}}}$].
Thank you for your attention