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Church's λ-Calculus

Note that third axiom will be dropped in 
favor of a theory employing properties 

of a partial ordering.

α-conversion
 λX.[...X...] = λY.[...Y...]

! (λX.[...X...])(T) = [...T...]

  λX.F(X) = F

β-conversion

η-conversion

   

Definition.  λ-calculus — as a formal theory — has 
rules for the explicit definition of functions 

via equational axioms:

   

The basic syntax has one binary operation 
of application and one variable-binding operator

of abstraction.  These are the "logical"
notions of the theory, but we can add other

constants for special operators.



The Graph Model

   

NOTE: This model could easily have been 
defined in 1957, and it satisfies the rules of  

α, β-conversion (but not η). 
(Some historical comments can be found 

at the end of these notes.)

    

Definition.  The enumeration operator model is 
given by these definitions on sets of integers:
 

Application
     

! F(X) = { m | ∃n ∈ X*.(n,m) ∈ F }
     

Abstraction
     

! λX.[...X...] = 

! ! {0}∪{ (n,m) | m  ∈ [... set(n)...] }

    

Definition. Define: The pairing (n,m) = 2n(2m+1).

Define:  Sequence numbers〈〉 = 0 and 

  〈n0,n1,...,nk-1,nk〉= (〈n0,n1,...,nk-1〉, nk).

Define: set(0) = ∅ and  set((n,m))= set(n)∪{ m }.  

Define: X* = { n | set(n) ⊆ X } for sets X of integers.



What is the Secret?
  

(1)  The powerset  P( )  = { X|X⊆  }is a topological 
space with the sets  Un = { X|n ∈ X*} as a basis for 
    

the topology.
   

(2)  Functions Φ:P( )n ⟶  P( ) are continuous iff, for all
 integers, m ∈ Φ(X0,X1,…,Xn-1) iff there are ki ∈ Xi* 
for all i<n, such that m ∈ Φ(set(k0),…, set(kn-1)).

   
   

(3)  The application operation F(X) is continuous as a 
function of two variables. 
   

(4)  If  Φ(X0,X1,…,Xn-1) is continuous, then the 
abstraction λX0.Φ(X0,X1,…,Xn-1) is continuous in all 

of the remaining variables. 
      
(5)  If Φ(X) is continuous, then λX.Φ(X) is the largest 
set  F such that for all sets T,  we have F(T)= Φ(T).

(6)  And, note, therefore, that generally  F ⊆ λX.F(X).



Some Lattice Properties

     

  •  All pure λ-terms define computable operators.

  •  If Φ(X) is continuous and we let ∇ = λX.Φ(X(X)), 
     then P = ∇(∇) is the least fixed point of Φ.
  •  The least fixed point of a computable operator is  
     computable.

Definition.  A continuous operator Φ(X0,X1,…,Xn-1) 
is computable iff in the model this set is RE: 

F = λX0λX1…λXn-1.Φ(X0,X1,…,Xn-1).

    

For all sets of integers F and G we have:

λX.F(X) ⊆ λX.G(X) ⟺  ∀X.F(X) ⊆ G(X),
   

λX.(F(X)∩ G(X)) = λX.F(X) ∩ λX.G(X),  

and 

λX.(F(X)∪ G(X)) = λX.F(X) ∪ λX.G(X). 

       

  Succ(X)={n+1|n ∈ X }, Pred(X)={n|n+1 ∈ X }, and
 Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z }  

 with λ-calculus suffices for defining all RE sets.



How to Randomize?

• This last definition is the beginning of putting
a Boolean-valued Logic on random variables

using the complete Boolean algebra of
measurable sets modulo sets of measure zero.

   

NOTE: This new model gives us a programming 
language with randomized parameters.

    

Definition. By a random variable we mean a function 

X:[0,1] ⟶  P( ),

where, for n ∈ , the set { t ∈ [0,1] |n ∈ X(t)}

is always Lebesgue measurable.

Definition. For random variables X,Y:[0,1] ⟶  P( ),
       

⟦ X⊆Y ⟧ ={ t ∈ [0,1] |∀n ∈ X(t).n ∈ Y(t)}/Null.

Theorem. The random variables over P( ) form
a Boolean-valued model for the λ-calculus —

expanding the two-valued model P( ).



Randomized Coin Tossing

The problem with using a coin-tossing process T
is that once Fst(T) has been looked at, then

that toss should be discarded, and only the coins
from Snd(T) should be used in the future.

Definition. A coin flip is a random variable 
F:[0,1] ⟶ {{0},{1}},

It is fair  iff  μ⟦ F = {0} ⟧ = 1/2.

Definition. Pairing functions for sets in P( ) can be

defined by these enumeration operators:
   

Pair(X)(Y)={2n|n ∈ X }∪{2m+1|m ∈ Y }
   

Fst(Z)={n|2n ∈ Z }  and  Snd(Z)={m|2m+1 ∈ Z }.

Definition.  A tossing process is a random variable 

T where Fst(T)is a fair coin flip and where
Snd(T) is another tossing — with the 

successive flippings all being mutually independent.



A Prototype Algorithm Language
   

Perhaps a solution is always to evaluate 
programs in the order in which expressions are 
written.  Let's try a very sparse language.

   
    

                  Vi — a variable
                  M(N) — an application

                  λVi.M — an abstraction

                  M⨁N — a stochastic choice

                  Let Vi= M in N — a direct valuation
   

         

The idea here is that the text M is evaluated 
in an environment giving the values of free 
variables.  Then the result is passed on to a 
continuation.  In case a random choice is 
needed, the tossing process is called.
   

We will try to employ a continuation semantics
where the denotation of a program uses the 
λ-calculus formulation:

    

⦉ M ⦊(env)(cont)(toss)



The Semantical Equations
   

• ⦉ Vi ⦊(E)(C)(T) = 

! C(E({i}))(T)

• ⦉ M(N) ⦊(E)(C)(T) = 

! ⦉ M ⦊(E)(λX.⦉ N ⦊(E)(λY.C(X(Y))))(T)

• ⦉λVi.M ⦊(E)(C)(T) = 

! C(λX.⦉ M ⦊(E[X/{i}]))(T)

• ⦉ M⨁N ⦊(E)(C)(T) =

! Test(Fst(T))(⦉ M ⦊(E))(⦉ N ⦊(E))(C)(Snd(T))

• ⦉ Let Vi= M in N ⦊(E)(C)(T) =

! ⦉ N ⦊(E[⦉ M ⦊(E)/{i}])(C)(T)

Running a (closed) program means evaluating:
   

⦉ M ⦊(∅)(λX.λY.X)(T)
   

The semantics and model as presented here, 
however, are only sketches.  Examples of 

randomized algorithms need to be worked out, 
as well as good methods of proving 
probabilistic properties of programs.



Simulating Automata

• More analysis is needed as to which random
automata define interesting languages.

   

Definition. Let § be a suitable RE set where

§(F)({0}) = λX.X and

§(F)({(n,m)}) = F({m}) ○ §(F)({n}).

Theorem. Let  ∈  P( ) be finite, then the 

regular languages contained in * are exactly the

sets of the form {σ ∈  * |0 ∈ §(A)({σ})(Q)},

where A,Q ∈ P( ) are finite.

Theorem. Let , Q ∈ P( ) be finite, let A be a

finite random variable, and let ε ∈ [0,1].  Then 

the probabilistic languages contained in * are 
among the sets of the form 

{σ ∈ * |μ⟦0 ∈ §(A)({σ})(Q)⟧ > ε}. 



The Fuzzy Powerset Model
   

This model satisfies α, β-conversion (but 
not η).  And random elements can be
added just as with the P( ) model.

    

Definition.  The fuzzy powerset model is given by 
these definitions on infinite-dimensional vectors:
 

Application
     

! F(X)m = sup{ F(n,m) | E(n)  <<   X }
     

Abstraction
     

! (λX.[...X...])0       = 1 

! (λX.[...X...])(n,m) = [...E(n)...]m

   

Theorem. For X ∈ F, we have X = sup{ E(n)| E(n)<< X }.

    

Definition.  Let E(n) enumerate the rational vectors in F 
with only finitely many non-zero coordinates.
    

Definition.  For X ∈ F, define  E(n)  <<  X  to mean that for
all i ∈  with E(n)i > 0, we have E(n)i <  Xi.

Definition.  Let F = [0,1]   be the infinite-dimensional cube.



Definition.  Recall that for X,Y ∈  we write

Pair(X)(Y)=(X,Y)={2n|n ∈ X}∪{2m+1|m ∈ Y},

Fst(Z)={n|2n ∈ Z}, and

Snd(Z)={m|2m+1 ∈ Z}.

So we regard  =  ×  , and for A ⊆  we write
X	 A	 	 Y iff (X,Y) ∈ A.

Note: It is better NOT to pass to equivalence classes 
and the quotient spaces.  But we can THINK 

in those terms if we like.
   

Definition.  For subspaces  ⊆  write

[ ] = {(X,X)| X ∈  },
   

so that we may regard subspaces as types.

What is a Type?

Definition. By a type over  we understand
a partial equivalence relation A ⊆  where, 

for all X,Y,Z ∈ , we have 

X	 A	 Y implies Y	 A	 X, and

X	 A	 Y and Y	 A	 Z imply X	 A	 Z.

Additionally we write X:A iff X	 A	 X.



Note: Types do form a category — expanding 
the topological category of subspaces — but 

we wish to prove much, much more.

The Category of Types
Definition. The product of types A,B ⊆  is 

defined as that relation where X(A  × B)Y iff 

Fst(X)A	 Fst(Y) and Snd(X)	 B	 Snd(Y).

Theorem. The product of two types is again 
a type, and we have 

X:(A  × B) iff Fst(X):A and Snd(X):B

Definition. The exponentiation of types A,B ⊆ 

is that relation where F(A  ￫ B)G iff 

∀X,Y. X A	 Y implies F(X)	 B	 G(Y).

Theorem. The exponentiation (= function space)
 
of two types is again a type, and we have 

   if F:A  ￫ B then ∀ X. X:A implies F(X):B.



Isomorphism of Types
Definition. The sum of types A,B ⊆  is defined 

as that relation where X(A  + B)Y iff

either ∃X0,Y0[X0A	 Y0 & X = (0,X0) & Y = (0,Y0)]

   or   ∃X1,Y1[X1B	 Y1 & X = (1,X1) & Y = (1,Y1)].

Theorem. The sum of two types is again 
a type, and we have 

X:(A  + B) iff either Fst(X) = 0 & Snd(X):A 
                  or Fst(X) = 1 & Snd(X):B.

Definition. Two types A,B ⊆  are isomorphic, 

in symbols A ≅ B, provided there are 

F:A  ￫ B and G:B  ￫ A	 where

∀X:A. X A	 G(F(X)) and ∀Y:B. Y B	 F(G(Y)). 

Theorem. If types A0 ≅ B0	 and A1 ≅ B1, then

    (A0 × A1) ≅ (B0  × B1), and 

    (A0  + A1) ≅ (B0  + B1), and 

(A0 ￫ A1) ≅ (B0  ￫ B1).



Definition.  Let T be the class of all types

on the powerset space .  

Theorem. The types on the powerset space  
form a bi-cartesian closed category, and

the isomorphism classes of types
satisfy all the usual laws of addition,
multiplication, and exponentiation.

Some Categorical Properties

Theorem. Isomorphism is is an equivalence
relation on T, and for all A,B,C ∈ T,

(A × B) ≅ (B  × A),	 and (A   + B) ≅ (B    + A), and

((A × B)× C) ≅ (A  ×(B× C)), and 

((A + B)+ C) ≅ (A +(B+ C)), and 

    (A  ×(B+ C)) ≅ (A × B)+(A × C), and 

((A × B)￫ C) ≅ (A ￫(B￫ C)), and 

(A ￫(B × C) ≅ (A ￫B)×(A￫ C)), and

((A + B)￫ C) ≅ (A ￫C)×(B￫ C)).



Theorem.  The dependent products and 
dependent sums of indexed families 

of types are again types. 

Dependent Types
Definition. Given A ∈ T, an A-indexed family of

types is a function B:  ￫ T, such that 

∀X0,X1. X0 A	 X1 implies B(X0) = B(X1).

Definition. The dependent product of an 
A-indexed family of types, B, is defined 

as that relation such that

F0(∏X:A.B(X))F1 iff
∀X0,X1. X0 A	 X1 implies F0(X0)	 B(X0) F1(X1).

Definition. The dependent sum of an 
A-indexed family of types, B, is defined 

as that relation such that

Z0(∑X:A.B(X))Z1 iff
∃X0,Y0,X1,Y1[X0A	 X1 &	 Y0B(X0)Y1 & 

Z0 = (X0,Y0) & Z1 = (X1,Y1)]



 

Note: Clearly the definition can be extended
to systems of any number of terms.

    

Theorem. Under the above assumptions on
A,B,C,D, we always have

∏X:A.∑Y:B(X).∏Z:C(X,Y).	 D(X,Y,Z) ∈ T.

Systems of Dependent Types
Definition. We say that A,B,C,D form  
a system of dependent types iff

• ∀X0,X1.[X0 A  X1 ⇒ B(X0) = B(X1)], and 

• ∀X0,X1,Y0,Y1.[X0 A  X1 & Y0 B(X0) Y1 ⇒ 

C(X0,Y0) = C(X1,Y1)], and

• ∀X0,X1,Y0,Y1,Z0,Z1.[X0 A  X1 & Y0 B(X0) Y1 &

Z0 C(X0,Y0) Z1 ⇒ D(X0,Y0,Z0) = D(X1,Y1,Z1)],

provided that A ∈ T, and B,C,D	 are

functions on  to T of the indicated 

number of arguments.



Note: Under this interpretation of logic,
asserting (P × Q) means asserting a conjunction,
asserting (P  + Q) means asserting a disjunction,

 asserting (P ￫ Q) means asserting an implication,
asserting (∏X:A.P(X)) means asserting a 

universal quantification, and
asserting (∑X:A.B(X)) means asserting an 

existential quantification.

Example: Given F:(A ￫ (A ￫ A)), then asserting
∏X:A.∏Y:A.∏Z:A. F(X)(F(Y)(Z)) ≡A F(F(X)(Y))(Z)
is the same as asserting that F is an associative operation.

Asserting Propositions
Definition. Every type	 P ∈ T can be regarded

as a proposition where asserting (or 

proving P) means finding evidence E:P.

Definition. For	 A ∈ T the identity type

on A is defined as that relation such that

Z(X≡AY)W iff Z	 A	 X	 A	 Y	 A	 W.



Some Background References
   

There are many approaches to modeling λ-calculus, and expositions and 
historical references can be found in Cardone-Hindley [2009].  In 1972 Plotkin 
wrote an AI report at the University of Edinburgh entitled "A set-theoretical 
definition of application" which remained unpublished until it was incorporated 
into the more extensive paper Plotkin [1993], which discusses many kinds of 
models.  Scott developed his model based on the powerset of the integers 
subsequently, but he only later realized it was basically the same as Plotkin's 
model.  See Scott [1976] for further details where he called the idea The Graph 
Model.

• F. Cardone and  J.R. Hindley. Lambda-Calculus and Combinators in the 20th 
Century. In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M. 
Gabbay and John Woods eds., North-Holland/Elsevier Science, 2009.
   
• Gordon D. Plotkin. Set-theoretical and other elementary models of the λ-
calculus.  Theoretical Computer Science, vol. 121 (1993), pp. 351-409.

• Dana S. Scott. Data types as lattices. SIAM Journal on Computing, vol. 5 (1976), 
pp. 522-587.

Much earlier, enumeration reducibility was introduced by Rogers in lecture notes 
and mentioned by Friedberg-Rogers  [1959] as a way of defining a positive 
reducibility between sets.   Enumeration degrees are discussed at length in Rogers 
[1967].  There is now a vast literature on the subject.  Enumeration operators are 
also studied in Rogers [1967] as well.  Earlier, Myhill-Shepherdson [1955] defined 
functionals on partial functions with similar properties.  Neither team saw that 
their operators possessed an algebra that would model λ-calculus, however.
    

• John Myhill and John C. Shepherdson, Effective operations on partial recursive 
functions, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 
vol. 1 (1955), pp. 310-317.
    

• Richard M. Friedberg and Hartley Rogers jr., Reducibility and Completeness for 
Sets of Integers. Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125.   Some 
of the results of this paper are presented in abstract, Journal of Symbolic Logic, 
vol. 22 (1957), p. 107.
    
    

• Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability, 
McGraw-Hill, 1967, xix + 482 pp.



More Background References
Some historical remarks on the notion of partial equivalence relations (PERs) as 
an interpretation of types are given by Bruce et al. [1990], where we learn that 
they were introduced by Myhill and Shepherdson [1955] for types of first-order 
functions, and then extended to simple types by Kreisel [1959].  Scott took the use 
of partial equivalence relations from the work of Kreisel and collaborators.

 • K. Bruce, A. A. Meyer, and J. C. Mitchell. The semantics of second-order 
lambda calculus.   In G. Huet, editor. Logical Foundations of Functional 
Programming, pp. 273–284. Addison-Wesley, 1990.

• G. Kreisel. Interpretation of analysis by means of constructive functionals of 
finite type. In A. Heyting, editor, Constructivity in Mathematics, pp. 101–128. 
North-Holland Co., Amsterdam, 1959.

Two papers about introducing random features in λ-calculus are Deliguoro-
Piperno [1995] and Dal Lago-Zorzia [2012].  Both of those articles have many 
historical references.

• U. Deliguoro and A. Piperno.  Nondeterministic Extensions of Untyped λ-
Calculus. Information and Computation, vol. 122 (1995), pp. 149–177.

• Ugo Dal Lago and Margherita Zorzia. Probabilistic operational semantics for the 
lambda calculus. RAIRO - Theoretical Informatics and Applications, vol. 46 
(2012), pp. 413-450.

The author is very much indebted to Thomas F. Icard III for pointing out these last 
two references in connection with work on his Stanford Ph.D. thesis.
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