On some topological properties of pointfree function rings

Mark Sioen

BLAST 2013, Chapman University, August 5-9

► Spatial setting

- Spatial setting
- ightharpoonup Frames and $\mathcal{L}(\mathbb{R})$

- ► Spatial setting
- ightharpoonup Frames and $\mathcal{L}(\mathbb{R})$
- ▶ The function rings $\Re(L)$ and $\Re^*(L)$

- ► Spatial setting
- ▶ Frames and $\mathcal{L}(\mathbb{R})$
- ▶ The function rings $\Re(L)$ and $\Re^*(L)$
- ▶ 'Topologies' on $\Re(L)$ and $\Re^*(L)$

- Spatial setting
- ▶ Frames and $\mathcal{L}(\mathbb{R})$
- ▶ The function rings $\Re(L)$ and $\Re^*(L)$
- ▶ 'Topologies' on $\mathfrak{R}(L)$ and $\mathfrak{R}^*(L)$
- Dini properties

- Spatial setting
- ▶ Frames and $\mathcal{L}(\mathbb{R})$
- ▶ The function rings $\Re(L)$ and $\Re^*(L)$
- ▶ 'Topologies' on $\Re(L)$ and $\Re^*(L)$
- Dini properties
- ► The Stone-Weierstrass property

Two well-known theorems

Two well-known theorems

Dini's theorem

Let X be a compact Hausdorff space, $f_n \in C(X)$ $(n \in \mathbb{N}_0)$ and $f \in C(X)$. If $(f_n)_n$ is increasing (i.e. $f_n \leq f_{n+1}$) and $(f_n)_n$ converges to f pointwise, then $(f_n)_n$ converges to f uniformly.

Two well-known theorems

Dini's theorem

Let X be a compact Hausdorff space, $f_n \in C(X)$ $(n \in \mathbb{N}_0)$ and $f \in C(X)$. If $(f_n)_n$ is increasing (i.e. $f_n < f_{n+1}$) and $(f_n)_n$ converges to f pointwise, then $(f_n)_n$ converges to f uniformly.

The Stone-Weierstrass theorem

Let X be a compact Hausdorff space. Every separating unital \mathbb{R} -subalgebra A of C(X) which separates points is dense in C(X)w.r.t. the uniform topology.

From theorems to properties

From theorems to properties

The Weak Dini Property (wDP)

A topological space X is said to satisfy the Weak Dini Property (wDP) if every increasing sequence $(f_n)_n$ in C(X) which converges to $f \in C(X)$ pointwise, converges to f uniformly.

From theorems to properties

The Weak Dini Property (wDP)

A topological space X is said to satisfy the *Weak Dini Property* (wDP) if every increasing sequence $(f_n)_n$ in C(X) which converges to $f \in C(X)$ pointwise, converges to f uniformly.

The Stone-Weierstrass Property (SWP)

A topological space is said to have the *Stone-Weierstrass Property* (SWP) if every separating unital \mathbb{R} -subalgebra A of $C^*(X)$ which separates points is dense in $C^*(X)$ w.r.t. the uniform topology.

Frames

Frames

The category Frm

objects: complete lattices L (top e, bottom 0) such that

$$a \wedge (\bigvee S) = \bigvee \{a \wedge s \mid s \in S\} \text{ (all } a \in L, S \subseteq L)$$

The category Frm

objects: complete lattices L (top e, bottom 0) such that

$$a \wedge (\bigvee S) = \bigvee \{a \wedge s \mid s \in S\} \text{ (all } a \in L, S \subseteq L)$$

morphisms: $(0, e, \land, \lor)$ -homomorphisms

The category Frm

objects: complete lattices L (top e, bottom 0) such that

$$a \wedge (\bigvee S) = \bigvee \{a \wedge s \mid s \in S\} \text{ (all } a \in L, S \subseteq L)$$

morphisms: $(0, e, \land, \lor)$ -homomorphisms

initial object: Boolean 2-chain 2

The category Frm

objects: complete lattices L (top e, bottom 0) such that

$$a \wedge (\bigvee S) = \bigvee \{a \wedge s \mid s \in S\} \text{ (all } a \in L, S \subseteq L)$$

morphisms: $(0, e, \land, \lor)$ -homomorphisms

initial object: Boolean 2-chain 2

dual category: Loc := Frmop : locales

Relation with topology

Relation with topology

$$\Omega : \mathbf{Top} \to \mathbf{Frm}^{\mathrm{op}} : \Omega(X) := \text{open set lattice of } X, \ \Omega(f) := f^{-1}[\cdot]$$

Relation with topology

$$\underline{\Omega: \mathbf{Top} \to \mathbf{Frm}^{\mathrm{op}}}: \Omega(X) := \mathrm{open} \ \mathrm{set} \ \mathrm{lattice} \ \mathrm{of} \ X, \ \Omega(f) := f^{-1}[\cdot]$$

$$\underline{\Sigma: \mathsf{Frm}^\mathsf{op} \to \mathsf{Top}:} \ \Sigma(\mathit{L}) := (\mathsf{Frm}(\mathit{L}, \mathbf{2}), \mathsf{natural topology})$$

$$\underline{\Omega}: \mathbf{Top} \to \mathbf{Frm}^{\mathrm{op}}: \Omega(X):= \mathrm{open} \ \mathrm{set} \ \mathrm{lattice} \ \mathrm{of} \ X, \ \Omega(f):=f^{-1}[\cdot]$$

$$\Sigma: \mathbf{Frm}^{\mathsf{op}} o \mathbf{Top}_{:} \Sigma(L) := (\mathbf{Frm}(L, \mathbf{2}), \mathsf{natural\ topology})$$

adjoint situation: $\Omega \dashv \Sigma$

$$\underline{\Omega}: \mathbf{Top} \to \mathbf{Frm}^{\mathrm{op}}: \Omega(X):= \mathrm{open} \ \mathrm{set} \ \mathrm{lattice} \ \mathrm{of} \ X, \ \Omega(f):=f^{-1}[\cdot]$$

$$\Sigma : \mathbf{Frm}^{\mathsf{op}} o \mathbf{Top} : \Sigma(L) := (\mathbf{Frm}(L, \mathbf{2}), \mathsf{natural topology})$$

adjoint situation: $\Omega \dashv \Sigma$

full embedding: $\Omega : \mathbf{Sob} \to \mathbf{Loc}$

$$\underline{\Omega}: \mathbf{Top} \to \mathbf{Frm}^{\mathrm{op}}: \ \Omega(X):= \mathrm{open} \ \mathrm{set} \ \mathrm{lattice} \ \mathrm{of} \ X, \ \Omega(f):=f^{-1}[\cdot]$$

$$\Sigma : \mathbf{Frm}^{\mathsf{op}} \to \mathbf{Top} : \Sigma(L) := (\mathbf{Frm}(L, \mathbf{2}), \mathsf{natural\ topology})$$

adjoint situation: $\Omega \dashv \Sigma$

full embedding: $\Omega : \mathbf{Sob} \to \mathbf{Loc}$

dual equivalence: **Sob** \simeq {spatial frames}^{op} = {spatial locales}

The frame of reals $\mathcal{L}(\mathbb{R})$

The frame of reals $\mathcal{L}(\mathbb{R})$

Option 1

Define $\mathcal{L}(\mathbb{R}) := \Omega(\mathbb{R})$

Option 1

Define $\mathcal{L}(\mathbb{R}) := \Omega(\mathbb{R})$

Option 2

Define $\mathcal{L}(\mathbb{R})$ to be the frame with generators

all pairs
$$(p,q)$$
 with $p,q \in \mathbb{Q}$

subject to the following relations:

- \triangleright $(p,q) \land (r,s) = (p \lor r, q \land s)$
- $(p,q) \lor (r,s) = (p,s)$ whenever $p \le r < q \le s$
- $(p,q) = \bigvee \{(r,s) \mid p < r < s < q\}$
- $ightharpoonup e = \bigvee \{(p,q) \mid p,q \in \mathbb{Q}\}$

The function rings $\Re(L)$ and $\Re^*(L)$

The pointfree counterpart to C(X)

For a frame L, let

Spatial setting

$$\mathfrak{R}(L) := \mathsf{Frm}(\mathcal{L}(\mathbb{R}), L)$$

with the following operations on it:

• for $\diamond \in \{+, \cdot, \vee, \wedge\}$,

$$(\alpha \diamond \beta)(p,q) := \bigvee \{\alpha(r,s) \land \beta(t,u) \mid \langle r,s \rangle \diamond \langle t,u \rangle \subseteq \langle p,q \rangle \}$$

- $(-\alpha)(p,q) := \alpha(-q,-p)$
- for each $r \in \mathbb{Q}$ a 0-ary operation **r** defined by

$$\mathbf{r}(p,q) := \begin{cases} e & \text{if } p < r < q \\ 0 & \text{otherwise} \end{cases}$$

Properties of $\mathfrak{R}(L)$

Fact

Properties of $\Re(L)$

Fact

- ► /-ring:
 - $(\alpha \diamond \beta) + \gamma = (\alpha + \gamma) \diamond (\beta + \gamma) \text{ for } \diamond \in \{\lor, \land\}$
 - $ightharpoonup \alpha\beta > 0$ if $\alpha, \beta > 0$

Fact

- ► /-ring:
 - $(\alpha \diamond \beta) + \gamma = (\alpha + \gamma) \diamond (\beta + \gamma)$ for $\diamond \in \{\lor, \land\}$
 - $ightharpoonup \alpha\beta > 0$ if $\alpha, \beta > 0$
- unital: unit is 1

Fact

- ► /-ring:
 - $(\alpha \diamond \beta) + \gamma = (\alpha + \gamma) \diamond (\beta + \gamma)$ for $\diamond \in \{\lor, \land\}$
 - $ightharpoonup \alpha\beta > 0$ if $\alpha, \beta > 0$
- unital: unit is 1
- strong: every α with $\alpha \geq 1$ is invertible

Properties of $\Re(L)$

Fact

- ► /-ring:
 - $(\alpha \diamond \beta) + \gamma = (\alpha + \gamma) \diamond (\beta + \gamma) \text{ for } \diamond \in \{\lor, \land\}$
 - $\rightarrow \alpha\beta > 0 \text{ if } \alpha, \beta > 0$
- unital: unit is 1
- strong: every α with $\alpha \geq 1$ is invertible
- ▶ archimedean: $\alpha, \beta \geq 0$ and $n\alpha \leq \beta$ (all n) imply $\alpha = 0$

Fact

- ► /-ring:
 - $(\alpha \diamond \beta) + \gamma = (\alpha + \gamma) \diamond (\beta + \gamma) \text{ for } \diamond \in \{ \lor, \land \}$
 - $\rightarrow \alpha\beta > 0 \text{ if } \alpha, \beta > 0$
- unital: unit is 1
- strong: every α with $\alpha \geq 1$ is invertible
- ▶ archimedean: $\alpha, \beta \geq 0$ and $n\alpha \leq \beta$ (all n) imply $\alpha = 0$
- f-ring: $|\alpha\beta| = |\alpha||\beta|$, with $|\alpha| := \alpha \vee (-\alpha)$

For a frame L, let

$$\mathfrak{R}^*(L) := \{ \alpha \in \mathfrak{R}(L) \mid |\alpha| \le \mathbf{n}, \text{ some } n \}$$

Fact

 $\mathfrak{R}^*(L)$ is an *I*-subring of $\mathfrak{R}(L)$ and hence also a strong unital archimedean f-ring.

The uniform topology: pointfree case

The uniform topology: pointfree case

Definition

For a frame L the *uniform topology* on $\Re(L)$ is the topology having

$$V_n(\alpha) := \{ \gamma \in \mathfrak{R}(L) \mid |\alpha - \gamma| < \frac{1}{\mathbf{n}} \}, \quad \text{ all } n \in \mathbb{N}_0$$

as a base for the neighborhoods of $\alpha \in \mathfrak{R}(L)$.

The uniform topology: pointfree case

Definition

For a frame L the uniform topology on $\Re(L)$ is the topology having

$$V_n(\alpha) := \{ \gamma \in \mathfrak{R}(L) \mid |\alpha - \gamma| < \frac{1}{\mathbf{n}} \}, \quad \text{ all } n \in \mathbb{N}_0$$

as a base for the neighborhoods of $\alpha \in \mathfrak{R}(L)$.

Definition

For a frame L the uniform topology on $\Re^*(L)$ is the subspace topology it inherits from the uniform topology on $\mathfrak{R}(L)$.

Pointwise convergence = convergence everywhere: spatial case

Definition

For a topological space X, a net $(f_n)_{n\in D}$ and $f\in C(X)$ we say that $(f_n)_{n\in D}$ converges to f everywhere, and write $(f_n)_{n\in D}\to f$, if

$$\forall x \in X, \forall m \in \mathbb{N}_0, \exists \eta_0 \in D, \forall \eta \in D : \eta \geq \eta_0 \Rightarrow |f(x) - f_{\eta}(x)| < \frac{1}{m}$$

Definition

For a topological space X, a net $(f_n)_{n\in D}$ and $f\in C(X)$ we say that $(f_n)_{n\in D}$ converges to f everywhere, and write $(f_n)_{n\in D}\to f$, if

$$\forall x \in X, \forall m \in \mathbb{N}_0, \exists \eta_0 \in D, \forall \eta \in D : \eta \geq \eta_0 \Rightarrow |f(x) - f_{\eta}(x)| < \frac{1}{m}$$

Definition

 \blacktriangleright A net $(f_n)_{n\in D}$ is called *increasing* if

$$\forall \eta, \mu \in D : \eta \leq \mu \Rightarrow f_{\eta} \leq f_{\mu}.$$

• A net $(f_{\eta})_{\eta \in D}$ is called *decreasing* if

$$\forall \eta, \mu \in D : \eta \leq \mu \Rightarrow f_{\eta} \geq f_{\mu}$$

Convergence everywhere for increasing/decreasing nets: spatial case

So for $(f_n)_{n\in D}$ increasing and with $f_n\leq f$ for all $\eta\in D$:

$$(f_{\eta})_{\eta \in D} \to f$$

$$\Leftrightarrow \forall m \in \mathbb{N}_{0} : \bigcup_{\eta_{0} \in D} \bigcap_{\eta \in D, \eta \geq \eta_{0}} \{x \in X \mid |f(x) - f_{\eta}(x)| < \frac{1}{m}\} = X$$

$$\Leftrightarrow \forall m \in \mathbb{N}_{0} : \bigcup_{\eta_{0} \in D} \{x \in X \mid f(x) - f_{\eta_{0}}(x) < \frac{1}{m}\} = X$$

$$\Leftrightarrow \forall m \in \mathbb{N}_{0} : \bigcup_{\eta_{0} \in D} \{x \in X \mid (1 - m(f(x) - f_{\eta_{0}}(x))) > 0\} = X$$

$$\Leftrightarrow \forall m \in \mathbb{N}_{0} : \bigcup_{\eta_{0} \in D} \{x \in X \mid (1 - m(f(x) - f_{\eta_{0}}(x))) \lor 0 \neq 0\} = X$$

Notation: in $\mathcal{L}(\mathbb{R})$, for every $p \in \mathbb{Q}$

$$(-,p) := \bigvee \{(q,p) \mid q \in \mathbb{Q}, q < p\}$$

$$(p,-):=\bigvee\{(p,q)\mid q\in\mathbb{Q},q>p\}$$

The cozero part of a frame - completely regular frames

Notation: in $\mathcal{L}(\mathbb{R})$, for every $p \in \mathbb{Q}$

$$(-,p) := \bigvee \{(q,p) \mid q \in \mathbb{Q}, q < p\}$$

$$(p,-) := \bigvee \{(p,q) \mid q \in \mathbb{Q}, q > p\}$$

Definition

For a frame L and $\alpha \in \mathfrak{R}(L)$,

$$coz(\alpha) := \alpha((-,0) \vee (0,-))$$

is called the *cozero element* determined by α .

 $Coz L := \{coz(\alpha) \mid \alpha \in \mathfrak{R}(L)\}\$ is called the *cozero part of L*.

The cozero part of a frame - completely regular frames

Fact

For any frame L, Coz(L) is a sub- σ -frame of L.

Definition

L a frame, $a, b \in L$:

- ▶ $a \prec b$ (a rather below b) $\equiv a^* \lor b = e$
- ▶ $a \prec \prec b$ (a well below b) \equiv exists $(a_r)_{r \in \mathbb{D}}$ such that $a_0 = a$, $a_1 = b$, and $a_r \prec a_s$ wehenver r < s
- ▶ L completely regular $\equiv a = \bigvee \{x \in L \mid x \prec \prec a\}$ for all $a \in L$

Fact

A frame L is completely regular if and only if it is (\bigvee)-generated by CozL.

Convergence everywhere for increasing nets: pointfree case

Definition

Let L be a frame, $\alpha \in \mathfrak{R}(L)$ and $(\alpha_n)_{n \in D}$ a net in $\mathfrak{R}(L)$. Then we say that $(\alpha_n)_{n\in D}$ increases everywhere to α , and we write $(\alpha_n)_{n\in D}\uparrow \alpha$ if $(\alpha_n)_{n\in D}$ is increasing, $\alpha_n\leq \alpha$ for all $\eta\in D$, and

$$\forall m \in \mathbb{N}_0 : \bigvee_{\eta \in D} \operatorname{coz}((\mathbf{1} - m(\alpha - \alpha_{\eta}))^+) = e.$$

Notation: for $\gamma \in \mathfrak{R}(L)$, we write $\gamma^+ := \gamma \vee 0$

Convergence everywhere for decreasing nets: pointfree case

Definition

Let L be a frame, $\alpha \in \mathfrak{R}(L)$ and $(\alpha_n)_{n \in D}$ a net in $\mathfrak{R}(L)$. Then we say that $(\alpha_n)_n$ decreases everywhere to α , and we write $(\alpha_n)_{n\in D}\downarrow \alpha$ if $(\alpha_n)_{n\in D}$ is decreasing, $\alpha_n\geq \alpha$ for all $\eta\in D$, and

$$\forall m \in \mathbb{N}_0 : \bigvee_{\eta \in D} \cos((1 - m(\alpha_{\eta} - \alpha))^+) = e.$$

Notation: for $\gamma \in \mathfrak{R}(L)$, we write $\gamma^+ := \gamma \vee 0$

The weak Dini Property

Definition (wDP)

For a frame L, we say that L satisfies the *weak Dini property* or (wDP) if for any $\alpha \in \mathfrak{R}(L)$ and any sequence $(\alpha_n)_n$ in $\mathfrak{R}(L)$ which increases everywhere to α , the sequence $(\alpha_n)_n$ converges to α in the uniform topology on $\mathfrak{R}(L)$.

The weak Dini Property

Definition (wDP)

For a frame L, we say that L satisfies the weak Dini property or (wDP) if for any $\alpha \in \mathfrak{R}(L)$ and any sequence $(\alpha_n)_n$ in $\mathfrak{R}(L)$ which increases everywhere to α , the sequence $(\alpha_n)_n$ converges to α in the uniform topology on $\mathfrak{R}(L)$.

Remark: note that (wDP) is equivalent to the statement with 'increasing' \rightarrow 'decreasing'

Pointfree pseudo-compactness

Definition

A frame L is called *pseudo-compact* if every element of $\mathfrak{R}(L)$ is bounded, i.e. if $\mathfrak{R}(L) = \mathfrak{R}^*(L)$.

Pointfree pseudo-compactness

Definition

A frame L is called *pseudo-compact* if every element of $\mathfrak{R}(L)$ is bounded, i.e. if $\mathfrak{R}(L) = \mathfrak{R}^*(L)$.

Theorem (Banaschewski-Gilmour)

For any frame L, the following are equivalent:

- (1) L is pseudo-compact.
- (2) Any sequence $a_0 \prec \prec a_1 \prec \prec a_2 \prec \prec \ldots$ such that $\bigvee a_n = e$ in L terminates, that is, $a_k = e$ for some k.
- (3) The σ -frame CozL is compact.

Theorem

For a frame *L* the following assertions are equivalent:

- (1) L satisfies (wDP).
- (2) L is pseudo-compact.

Theorem

For a frame *L* the following assertions are equivalent:

- (1) L satisfies (wDP).
- (2) *L* is pseudo-compact.

Theorem

For a frame *L* the following assertions are equivalent:

- (1) L satisfies (wDP).
- (2) L is pseudo-compact.

Proof:

 $(1) \Rightarrow (2)$:

Theorem

For a frame *L* the following assertions are equivalent:

- (1) L satisfies (wDP).
- (2) *L* is pseudo-compact.

- $(1) \Rightarrow (2)$:
 - ▶ take $\alpha \in \mathfrak{R}(L)$, $\alpha \geq 0$

Theorem

For a frame L the following assertions are equivalent:

- (1) L satisfies (wDP).
- (2) L is pseudo-compact.

$$(1) \Rightarrow (2)$$
:

- ▶ take $\alpha \in \Re(L)$, $\alpha \geq 0$
- show that $(\alpha \wedge \mathbf{n})_n \uparrow \alpha$

Theorem

For a frame L the following assertions are equivalent:

- (1) L satisfies (wDP).
- (2) L is pseudo-compact.

$$(1) \Rightarrow (2)$$
:

- ▶ take $\alpha \in \Re(L)$, $\alpha \geq 0$
- show that $(\alpha \wedge \mathbf{n})_n \uparrow \alpha$
- ▶ by (wDP), $(\alpha \land \mathbf{n})_n$ converges to α w.r.t. the uniform topology

Theorem

For a frame L the following assertions are equivalent:

- (1) L satisfies (wDP).
- (2) L is pseudo-compact.

$$(1) \Rightarrow (2)$$
:

- ▶ take $\alpha \in \Re(L)$, $\alpha \geq 0$
- ightharpoonup show that $(\alpha \wedge \mathbf{n})_n \uparrow \alpha$
- **b** by (wDP), $(\alpha \wedge \mathbf{n})_n$ converges to α w.r.t. the uniform topology
- ▶ so $\alpha \alpha \land \mathbf{n} \le \mathbf{1}$ for some *n*, hence α is bounded

 $(2) \Rightarrow (1)$:

$$(2) \Rightarrow (1)$$
:

▶ assume $(\alpha_n)_n \uparrow \alpha$

$(2) \Rightarrow (1)$:

- ightharpoonup assume $(\alpha_n)_n \uparrow \alpha$
- $\forall m \in \mathbb{N}_0 : \bigvee_{n \in \mathbb{N}_0} \operatorname{coz}((\mathbf{1} m(\alpha \alpha_n))^+) = e$

$(2) \Rightarrow (1)$:

- ightharpoonup assume $(\alpha_n)_n \uparrow \alpha$
- $\forall m \in \mathbb{N}_0 : \bigvee_{n \in \mathbb{N}_0} \operatorname{coz}((1 m(\alpha \alpha_n))^+) = e$
- \triangleright invoking pseudo-compactness, form $(n_m)_m$ such that

$$\forall m \in \mathbb{N}_0 : \operatorname{coz}((\mathbf{1} - m(\alpha - \alpha_{n_m}))^+) = e$$

$(2) \Rightarrow (1)$:

- ▶ assume $(\alpha_n)_n \uparrow \alpha$
- $\forall m \in \mathbb{N}_0 : \bigvee_{n \in \mathbb{N}_0} \operatorname{coz}((1 m(\alpha \alpha_n))^+) = e$
- \triangleright invoking pseudo-compactness, form $(n_m)_m$ such that

$$\forall m \in \mathbb{N}_0 : \operatorname{coz}((\mathbf{1} - m(\alpha - \alpha_{n_m}))^+) = e$$

▶ then $\forall m \in \mathbb{N}_0 : \alpha - \alpha_{n_m} \leq \frac{1}{m}$

$(2) \Rightarrow (1)$:

- ightharpoonup assume $(\alpha_n)_n \uparrow \alpha$
- $\forall m \in \mathbb{N}_0 : \bigvee_{n \in \mathbb{N}_0} \operatorname{coz}((1 m(\alpha \alpha_n))^+) = e$
- \triangleright invoking pseudo-compactness, form $(n_m)_m$ such that

$$\forall m \in \mathbb{N}_0 : \operatorname{coz}((\mathbf{1} - m(\alpha - \alpha_{n_m}))^+) = e$$

- ▶ then $\forall m \in \mathbb{N}_0 : \alpha \alpha_{n_m} \leq \frac{1}{m}$
- \triangleright so, since $(\alpha_n)_n$ is increasing, $(\alpha_n)_n$ converges to α w.r.t. the uniform topology

The Strong Dini Poperty

Definition (sDP)

For a frame L, we say that L satisfies the *strong Dini property* or (sDP) if for any $\alpha \in \mathcal{R}L$ and any net $(\alpha_{\eta})_{\eta \in D}$ in $\mathcal{R}L$ which increases everywhere to α , the net $(\alpha_{\eta})_{\eta \in D}$ converges to α in the uniform topology on $\mathcal{R}L$.

The Strong Dini Poperty

Definition (sDP)

For a frame L, we say that L satisfies the *strong Dini property* or (sDP) if for any $\alpha \in \mathcal{R}L$ and any net $(\alpha_{\eta})_{\eta \in D}$ in $\mathcal{R}L$ which increases everywhere to α , the net $(\alpha_{\eta})_{\eta \in D}$ converges to α in the uniform topology on $\mathcal{R}L$.

Remark: note that (sDP) is equivalent to the statement with 'increasing' \rightarrow 'decreasing'

Theorem

For a frame *L* the following assertions are equivalent:

- (1) L satisfies (sDP).
- (2) Every cover *L* consisting of cozero elements has a finite subcover.
- (3) The completely regular coreflection of L compact.

Theorem

For a frame *L* the following assertions are equivalent:

- (1) L satisfies (sDP).
- (2) Every cover *L* consisting of cozero elements has a finite subcover.
- (3) The completely regular coreflection of *L* compact.

Theorem

For a frame *L* the following assertions are equivalent:

- (1) L satisfies (sDP).
- (2) Every cover *L* consisting of cozero elements has a finite subcover.
- (3) The completely regular coreflection of *L* compact.

Proof:

 $(2) \Leftrightarrow (3)$: clear

 $(2) \Rightarrow (1)$:

$$(2) \Rightarrow (1)$$
:

▶ assume $(\alpha_{\eta})_{\eta \in D} \downarrow 0$ in $\Re(L)$, fix $m \in \mathbb{N}_0$

$(2) \Rightarrow (1)$:

- ▶ assume $(\alpha_{\eta})_{\eta \in D} \downarrow 0$ in $\Re(L)$, fix $m \in \mathbb{N}_0$
- $\bigvee_{\eta \in D} \operatorname{coz}((\mathbf{1} m\alpha_{\eta})^{+}) = e$

$(2) \Rightarrow (1)$:

- ▶ assume $(\alpha_{\eta})_{\eta \in D} \downarrow 0$ in $\Re(L)$, fix $m \in \mathbb{N}_0$
- $\bigvee_{\eta \in D} \operatorname{coz}((\mathbf{1} m\alpha_{\eta})^{+}) = e$
- using (2), pick $\eta_0 \in D$ with $coz((1 m\alpha_{\eta_0})^+) = e$

$(2) \Rightarrow (1)$:

- ▶ assume $(\alpha_{\eta})_{\eta \in D} \downarrow 0$ in $\Re(L)$, fix $m \in \mathbb{N}_0$
- $\bigvee_{\eta \in D} \operatorname{coz}((\mathbf{1} m\alpha_{\eta})^{+}) = e$
- ▶ using (2), pick $\eta_0 \in D$ with $coz((1 m\alpha_{n_0})^+) = e$
- ▶ then $\alpha_{\eta_0} \leq \frac{1}{m}$

$(2) \Rightarrow (1)$:

- ▶ assume $(\alpha_n)_{n\in D} \downarrow 0$ in $\Re(L)$, fix $m \in \mathbb{N}_0$
- $\bigvee_{n\in D} \cos((1-m\alpha_n)^+) = e$
- ▶ using (2), pick $\eta_0 \in D$ with $coz((1 m\alpha_{n_0})^+) = e$
- ▶ then $\alpha_{\eta_0} \leq \frac{1}{m}$
- ▶ remember $(\alpha_n)_{n \in D}$ is decreasing
- ightharpoonup so $(\alpha_n)_n$ converges to α w.r.t. the uniform topology

$$(1) \Rightarrow (2)$$
:

▶ take $F \subseteq Coz(L)$ with $\bigvee F = e$

- ▶ take $F \subseteq Coz(L)$ with $\bigvee F = e$
- ▶ for all $a \in F$, pick $\alpha_a \in \Re(L)$ with $0 \le \alpha \le 1$ such that $coz(\alpha_a) = a$

- ▶ take $F \subseteq Coz(L)$ with $\bigvee F = e$
- ▶ for all $a \in F$, pick $\alpha_a \in \Re(L)$ with $0 \le \alpha \le 1$ such that $coz(\alpha_a) = a$
- ▶ put $D := \mathfrak{P}_{fin}(F \times \mathbb{N}_0)$, ordered by \subseteq

- ▶ take $F \subset Coz(L)$ with $\bigvee F = e$
- ▶ for all $a \in F$, pick $\alpha_a \in \Re(L)$ with $0 < \alpha < 1$ such that $coz(\alpha_a) = a$
- ▶ put $D := \mathfrak{P}_{fin}(F \times \mathbb{N}_0)$, ordered by \subseteq
- for all $\eta \in D$, define

$$eta_\eta := \bigvee_{(a,n)\in\eta} (nlpha_a - \mathbf{1})^+ \wedge \mathbf{1}$$

$(1) \Rightarrow (2)$:

- ▶ take $F \subset Coz(L)$ with $\bigvee F = e$
- ▶ for all $a \in F$, pick $\alpha_a \in \Re(L)$ with $0 < \alpha < 1$ such that $coz(\alpha_a) = a$
- ▶ put $D := \mathfrak{P}_{fin}(F \times \mathbb{N}_0)$, ordered by \subseteq
- for all $\eta \in D$, define

$$eta_\eta := \bigvee_{(\mathsf{a},\mathsf{n})\in\eta} (\mathsf{n}lpha_\mathsf{a} - \mathbf{1})^+ \wedge \mathbf{1}$$

 \triangleright verify that $(\beta_n)_{n\in D}\uparrow \mathbf{1}$

lacktriangle by (sDP), $(eta_\eta)_{\eta\in D}$ converges to ${\bf 1}$ w.r.t. the uniform topology

- ▶ by (sDP), $(\beta_{\eta})_{\eta \in D}$ converges to **1** w.r.t. the uniform topology
- ▶ pick $\eta \in D \ (\eta \neq \emptyset)$ such that

$$\beta_{\eta} = \bigvee_{(a,n)\in\eta} (n\alpha_a - 1)^+ \wedge 1 \ge \frac{1}{2}$$

- ▶ by (sDP), $(\beta_{\eta})_{\eta \in D}$ converges to **1** w.r.t. the uniform topology
- ▶ pick $\eta \in D$ $(\eta \neq \emptyset)$ such that

$$eta_{\eta} = \bigvee_{(\mathsf{a},\mathsf{n}) \in \eta} (\mathsf{n}\alpha_{\mathsf{a}} - \mathbf{1})^{+} \wedge \mathbf{1} \geq \frac{1}{2}$$

▶ since $\Re(L)$ is an *I*-ring, this implies that

$$\sum_{(a,n)\in\eta}(n\alpha_a-1)^+\geq\frac{1}{2}$$

- ▶ by (sDP), $(\beta_n)_{n \in D}$ converges to **1** w.r.t. the uniform topology
- ▶ pick $\eta \in D$ $(\eta \neq \emptyset)$ such that

$$\beta_{\eta} = \bigvee_{(a,n)\in\eta} (n\alpha_a - 1)^+ \wedge 1 \ge \frac{1}{2}$$

 \blacktriangleright since $\Re(L)$ is an *I*-ring, this implies that

$$\sum_{(\mathsf{a},\mathsf{n})\in\eta}(\mathsf{n}\alpha_\mathsf{a}-1)^+\geq\frac{1}{2}$$

SO

$$e = \cos \left(\sum_{(a,n) \in \eta} (n\alpha_a - 1)^+ \right) = \bigvee_{(a,n) \in \eta} \cos(n\alpha_a - 1)^+ \le \bigvee_{(a,n) \in \eta} a$$

Definition

For an infinite cardinal number κ , a frame L is called *initially* κ -compact if every cover of L of cardinality at most κ admits a finite subcover.

Definition

For an infinite cardinal number κ , a frame L is called *initially* κ -compact if every cover of L of cardinality at most κ admits a finite subcover.

<u>Note:</u> for $\kappa = \aleph_0$, initially κ -compact means countably compact.

Definition

For an infinite cardinal number κ , a frame L is called *initially* κ -compact if every cover of L of cardinality at most κ admits a finite subcover.

<u>Note:</u> for $\kappa = \aleph_0$, initially κ -compact means countably compact.

Definition (κ -DP)

For a frame L and an infinite cardinal number κ , we say that L satisfies the κ -Dini property or $(\kappa$ -DP) if for any $\alpha \in \mathfrak{R}(L)$ and any net $(\alpha_{\eta})_{\eta \in D}$ in $\mathfrak{R}(L)$ with cardinality of D at most κ and which increases everywhere to α , the net $(\alpha_{\eta})_{\eta \in D}$ converges to α in the uniform topology on $\mathfrak{R}(L)$.

Characterizing (κ -DP)

Corollary

For a frame L and an infinite cardinal number κ , the following assertions are equivalent:

- (1) L satisfies (κ -DP).
- (2) Every cover L consisting of cozero elements and of cardinality at most κ has a finite subcover.
- (3) The completely regular coreflection of L is initially κ -compact.

Characterizing (κ -DP)

Corollary

For a frame L and an infinite cardinal number κ , the following assertions are equivalent:

- (1) L satisfies (κ -DP).
- (2) Every cover L consisting of cozero elements and of cardinality at most κ has a finite subcover.
- (3) The completely regular coreflection of L is initially κ -compact.

Proof:

Characterizing (κ -DP)

Corollary

For a frame L and an infinite cardinal number κ , the following assertions are equivalent:

- (1) L satisfies (κ -DP).
- (2) Every cover L consisting of cozero elements and of cardinality at most κ has a finite subcover.
- (3) The completely regular coreflection of L is initially κ -compact.

Proof:

Note that for κ infinite and $Card(F) \leq \kappa$:

$$\operatorname{Card}(\mathfrak{P}_{\operatorname{fin}}(F \times \mathbb{N}_0)) = \operatorname{Card}(\bigcup_{n \in \mathbb{N}} (F \times \mathbb{N}_0)^n) \leq \kappa.$$

Some terminology

Definition

(κ an infinite cardinal number) A frame L is called

- ▶ Lindelöf if every cover of L admits a countable subcover
- quasi-Lindelöf if every cover of L consisting of cozero elements admits a countable subcover
- ▶ initially κ -Lindelöf, if every cover of L of cardinality at most κ admits a countable subcover
- ▶ initially κ -quasi-Lindelöf, if every cover of L consisting of cozero elements and of cardinality at most κ admits a countable subcover

Characterizing (sDP) and (κ -DP)

Proposition

For a frame L, the following assertions are equivalent:

- (1) L satisfies (sDP).
- (2) L is quasi-Lindelöf and L satisfies (wDP).

Characterizing (sDP) and (κ -DP)

Proposition

For a frame L, the following assertions are equivalent:

- (1) L satisfies (sDP).
- (2) L is quasi-Lindelöf and L satisfies (wDP).

Proposition

For a frame L and an infinite cardinal number κ , the following assertions are equivalent:

- (1) L satisfies (κ -DP).
- (2) L is initially κ -quasi-Lindelöf and L satisfies (wDP).

Characterizing quasi-Lindelöfness

Theorem

For a frame L, the following assertions are equivalent:

- (1) L is quasi-Lindelöf.
- The completely regular coreflection of L is Lindelöf.
- (3) For any net $(\alpha_{\eta})_{\eta \in D}$ in $\mathfrak{R}(L)$ and any $\alpha \in \mathfrak{R}(L)$ such that $(\alpha_n)_{n\in D}\uparrow \alpha$ (resp. $(\alpha_n)_{n\in D}\downarrow \alpha$), there exists an increasing sequence $(\eta_n)_n$ in D such that $(\alpha_{\eta_n})_n \uparrow \alpha$ (resp. $(\alpha_{\eta_n})_n \downarrow \alpha$).

Dini properties

Theorem

For a frame L and an infinite cardinal number κ , the following assertions are equivalent:

- (1) L is initially κ -quasi-Lindelöf.
- (2) The completely regular coreflection of L is initially κ -Lindelöf.
- (3) For any net $(\alpha_{\eta})_{\eta \in D}$ in $\Re(L)$ with cardinality of D at most κ and any $\alpha \in \mathfrak{R}(L)$ such that $(\alpha_n)_{n \in D} \uparrow \alpha$ (resp. $(\alpha_n)_{n\in D}\downarrow \alpha$), there exists an increasing sequence $(\eta_n)_n$ in D such that $(\alpha_{n_n})_n \uparrow \alpha$ (resp. $(\alpha_{n_n})_n \downarrow \alpha$).

Definition

(κ an infinite cardinal number) A frame L is called

▶ almost-compact if for every cover F of L, there exists $S \subseteq F$ finite such that

$$(\bigvee S)^* = 0.$$

• initially κ -almost-compact if for every cover F of L of cardinalty at most κ , there exists $S \subseteq F$ finite such that

$$(\bigvee S)^* = 0.$$

Definition

(κ an infinite cardinal number) A frame L is called

quasi-almost-compact if for every cover F of L consisting of cozero elements and of cardinalty at most κ , there exists $S \subseteq F$ finite such that

$$(\bigvee S)^* = 0.$$

• initially κ -quasi-almost-compact if for every cover F of L consisting of cozero elements and of cardinalty at most κ , there exists $S \subseteq F$ finite such that

$$(\bigvee S)^* = 0.$$

Proposition

Every quasi-almost-compact frame satisfies (sDP). For any infinite cardinal number κ , every initially κ -quasi-almost-compact frame satisfies (κ -DP).

Proposition

Every quasi-almost-compact frame satisfies (sDP). For any infinite cardinal number κ , every initially κ -quasi-almost-compact frame satisfies (κ -DP).

Proof:

Proposition

Every quasi-almost-compact frame satisfies (sDP). For any infinite cardinal number κ , every initially κ -quasi-almost-compact frame satisfies (κ -DP).

Proof:

▶ assume $(\alpha_{\eta})_{\eta \in D} \downarrow 0$ in $\Re(L)$ (with $Card(D) \leq \kappa$)

Proposition

Every quasi-almost-compact frame satisfies (sDP). For any infinite cardinal number κ , every initially κ -quasi-almost-compact frame satisfies (κ -DP).

Proof:

- ▶ assume $(\alpha_n)_{n \in D} \downarrow 0$ in $\Re(L)$ (with Card $(D) \leq \kappa$)
- **SO**

$$\bigvee_{\eta \in D} \mathsf{coz}((\mathbf{1} - m\alpha_{\eta})^+) = e$$

Proposition

Every quasi-almost-compact frame satisfies (sDP). For any infinite cardinal number κ , every initially κ -quasi-almost-compact frame satisfies (κ -DP).

Proof:

- ▶ assume $(\alpha_n)_{n \in D} \downarrow 0$ in $\Re(L)$ (with Card $(D) \leq \kappa$)
- **SO**

$$\bigvee_{\eta \in D} \mathsf{coz}((\mathbf{1} - m\alpha_{\eta})^{+}) = e$$

• by $(\kappa$ -)quasi-almost-compactness, there exists $\eta_0 \in D$ such that

$$(\underbrace{\operatorname{coz}((\mathbf{1} - m\alpha_{\eta_0})^+)}_{2^*-})^* = 0$$

▶ so $(\cdot) \land a : L \rightarrow \downarrow a$ is a dense frame homomorphism

- ▶ so $(\cdot) \land a : L \rightarrow \downarrow a$ is a dense frame homomorphism
- ▶ show that $((\cdot) \land a) \circ (m\alpha_{n_0} 1)^+ = 0$

- ▶ so $(\cdot) \land a : L \rightarrow \downarrow a$ is a dense frame homomorphism
- ▶ show that $((\cdot) \land a) \circ (m\alpha_{n_0} 1)^+ = 0$
- therefore

$$(m\alpha_{\eta_0}-\mathbf{1})^+=0,$$

- ▶ so $(\cdot) \land a : L \rightarrow \downarrow a$ is a dense frame homomorphism
- ▶ show that $((\cdot) \land a) \circ (m\alpha_{n_0} 1)^+ = 0$
- therefore

$$(m\alpha_{\eta_0}-\mathbf{1})^+=0,$$

i.e.

$$0 \le \alpha_{\eta_0} \le \frac{1}{\mathbf{m}}$$

- ▶ so $(\cdot) \land a : L \rightarrow \downarrow a$ is a dense frame homomorphism
- ▶ show that $((\cdot) \land a) \circ (m\alpha_{n_0} 1)^+ = 0$
- therefore

$$(m\alpha_{\eta_0}-\mathbf{1})^+=0,$$

i.e.

$$0 \le \alpha_{\eta_0} \le \frac{1}{\mathbf{m}}$$

 \triangleright so $(\alpha_n)_n$ converges to 0 w.r.t. the uniform topology

A final characterization of (sDP), (κ -DP) and (wDP)

... to make terminology consistent:

Definition

(κ an infinite cardinal number) a frame L is called

- quasi-compact if every cover of L consisting of cozero elements admits a finite subcover
- ▶ initially κ -quasi-compact if every cover of L consisting of cozero elements and of cardinality at most κ admits a finite subcover

A final characterization of (sDP), (κ -DP) and (wDP)

Corollary

For a frame *L* the following assertions are equivalent:

- (1) L satisfies (sDP).
- (2) L is quasi-compact.
- (3) The completely regular coreflection of L is compact.
- (4) L is quasi-almost-compact.

Corollary

For a frame L and an infinite cardinal number κ , the following assertions are equivalent:

- (1) L satisfies (κ -DP).
- (2) L is initially κ -quasi-compact.
- (3) The completely regular coreflection of L is initially κ -compact.
- (4) L is initially κ -quasi-almost-compact.

A final characterization of (SDP), (κ -DP) and (wDP)

Corollary

For a completely regular frame L the following assertions are equivalent:

- (1) L satisfies (sDP).
- (2) L is compact.
- (3) L is almost compact.

Corollary

For a completely regular frame L and an infinite cardinal number κ , the following assertions are equivalent:

- (1) L satisfies $(\kappa$ -DP).
- (2) L is initially κ -compact.
- (3) L is initially κ -almost-compact.

A final characterization of (SDP), (κ -DP) and (wDP)

Corollary

For a completely regular frame L and an infinite cardinal number κ , the following assertions are equivalent:

- (1) L satisfies (wDP).
- (2) L is countably-compact.
- (3) *L* is countably-almost-compact.
- (4) L is pseudo-compact.

The Pointfree Stone-Weierstrass theorem

Definition (Banaschewski)

Let L be a completely regular frame. An \mathbb{R} -subalgebra A of $\mathfrak{R}^*(L)$ is called *separating* if $coz[A] = \{coz(\alpha) \mid \alpha \in A\}$ (\bigvee -)generates L.

The Pointfree Stone-Weierstrass theorem

Definition (Banaschewski)

Let L be a completely regular frame. An \mathbb{R} -subalgebra A of $\mathfrak{R}^*(L)$ is called *separating* if $coz[A] = \{coz(\alpha) \mid \alpha \in A\}$ (\bigvee -)generates L.

Definition

A completely regular frame L is said to have the *Stone-Weierstrass Property* or(SWP) if every separating unital \mathbb{R} -subalgebra of $\mathfrak{R}^*(L)$ is dense in $\mathfrak{R}^*(L)$ with respect to the uniform topology.

The Pointfree Stone-Weierstrass theorem

Definition (Banaschewski)

Let L be a completely regular frame. An \mathbb{R} -subalgebra A of $\mathfrak{R}^*(L)$ is called *separating* if $coz[A] = \{coz(\alpha) \mid \alpha \in A\}$ (\bigvee -)generates L.

Definition

A completely regular frame L is said to have the *Stone-Weierstrass Property* or(SWP) if every separating unital \mathbb{R} -subalgebra of $\mathfrak{R}^*(L)$ is dense in $\mathfrak{R}^*(L)$ with respect to the uniform topology.

Pointfree Stone-Weierstrass Theorem (Banaschewski)

All compact completely regular frames satisfy (SWP).

Characterizing (SWP)?

Definition

For a frame L, we call an I-subring A of $\mathfrak{R}^*(L)$ a K-ring of L if

- ► A is complete with respect to the natural uniformity
- ► A contains the constant functions
- A is separating

We write $\mathbf{KRg}(L)$ for the lattice of K-rings of L, considered as a category.

Characterizing (SWP)?

Definition

For a frame L, we call an I-subring A of $\mathfrak{R}^*(L)$ a K-ring of L if

- ► A is complete with respect to the natural uniformity
- A contains the constant functions
- A is separating

We write $\mathbf{KRg}(L)$ for the lattice of K-rings of L, considered as a category.

Theorem (Banaschewski-S.)

For a completely regular frame L, $\mathbf{KRg}(L)$ is equivalent to the category the category $\Delta(\mathbf{K} \downarrow L)$ of all compactifications of L.

Characterizing (sWP)

Corollary

For a completely regular frame L, the following assertions are equivalent:

- (1) L satisfies (sWP)
- (2) $\Re^*(L)$ is the only K-ring of L
- (3) β_L is (upto isomorphisms fixing L) the only compactification of L.

Thanks for your attention!