Boolean topological graphs of semigroups

 Michał Stronkowski
 Belinda Trotta

 Warsaw University of Technology
 AGL Energy in Melbourne

 BLAST, August 2013
universal Horn classes

uH-sentences look like

\[(\forall \bar{x}) [\varphi_1(\bar{x}) \land \cdots \land \varphi_n(\bar{x}) \rightarrow \varphi(\bar{x})],\]

or like

\[(\forall \bar{x}) [\neg \varphi_1(\bar{x}) \lor \cdots \lor \neg \varphi_n(\bar{x})]\]

where \(\varphi_i(\bar{x}), \varphi(\bar{x})\) are atomic formulas.

uH-classes look like \(\text{Mod}(\text{uH-sentences})\).

The uH-class generated by a class \(\mathcal{K}\) equals \(\text{SP}^+\text{P}_U(\mathcal{K})\).

uH-class \(\mathcal{H}\) is finitely axiomatizable (finitely based) if \(\mathcal{H} = \text{Mod}(\Sigma)\) for some finite set \(\Sigma\) of uH-sentences.
The graph of a semigroup $S = (S, \cdot)$ is NOT a graph. It is the relational structure
\[G(S) = (S, R), \]
where
\[(a, b, c) \in R \quad \text{iff} \quad a \cdot b = c. \]

For a class C of semigroups let $G(C) = \{ G(S) \mid S \in C \}$.

Theorem (Gornostaev, S)
Let C be a class of semigroups possessing a nontrivial member with a neutral element. Then $SP^+PUG(C)$ is not finitely axiomatizable.
Fact
Let \mathcal{H} be a finitely axiomatizable uH-class of relational structures. Then there is a finite n such that for each relational structure M we have

$$M \in \mathcal{H} \iff (\forall N \leq M) \left[|N| \leq n \rightarrow N \in \mathcal{H} \right].$$

Thus it is enough to construct for each n a structure M_n such that

- $M_n \notin SG(\text{Semigroups})$,
- if $N \leq M_n$ and $|N| \leq n$, then $N \in SPG(\mathcal{C})$.
construction of M_n

<table>
<thead>
<tr>
<th>Elements of M_k</th>
<th>Elements of Z_2^{n+6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>1100 000···000···000 0</td>
</tr>
<tr>
<td>a_1</td>
<td>0011 000···000···000 0</td>
</tr>
<tr>
<td>a_0 →</td>
<td>1010 000···000···000 0</td>
</tr>
<tr>
<td>a_1</td>
<td>0101 000···000···000 0</td>
</tr>
<tr>
<td>b →</td>
<td>1111 000···000···000 0</td>
</tr>
<tr>
<td>c_0</td>
<td>0000 100···000···000 0</td>
</tr>
<tr>
<td>c_1</td>
<td>0000 010···000···000 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>c_k →</td>
<td>0000 000···100···000 0</td>
</tr>
<tr>
<td>c_{k+1}</td>
<td>0000 000···001···000 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>c_n</td>
<td>0000 000···000···001 0</td>
</tr>
<tr>
<td>d_0</td>
<td>0011 100···000···000 0</td>
</tr>
<tr>
<td>d_1</td>
<td>0011 110···000···000 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>d_k →</td>
<td>0011 111···100···000 0</td>
</tr>
<tr>
<td>d_k</td>
<td>0011 111···110···000 1</td>
</tr>
<tr>
<td>d_{k+1}</td>
<td>0011 111···111···000 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>d_n</td>
<td>0011 111···111···111 1</td>
</tr>
<tr>
<td>d_0</td>
<td>0101 100···000···000 0</td>
</tr>
<tr>
<td>d_1</td>
<td>0101 110···000···000 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>d_k →</td>
<td>0101 111···100···000 0</td>
</tr>
<tr>
<td>d_k</td>
<td>0101 111···110···000 0</td>
</tr>
<tr>
<td>d_{k+1}</td>
<td>0101 111···111···000 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>d_n</td>
<td>0101 111···111···111 0</td>
</tr>
<tr>
<td>e →</td>
<td>1111 111···111···111 1</td>
</tr>
</tbody>
</table>

Table: The mapping j_k. Elements of Z_2^{n+6} are represented as words over Z_2. For the sake of clarity we divided these words into 3 segments of length 4, $n+1$ and 1 respectively. In the second segment ($k-1$)th, kth and ($k+1$)th digits are placed between dots.
Fact
Let \mathcal{H} be a finitely axiomatizable uH-class of relational structures. Then there is a finite n such that for each relational structure \mathbf{M} we have

\[\mathbf{M} \in \mathcal{H} \iff (\forall \mathbf{N} \leq \mathbf{M}) [|\mathbf{N}| \leq n \rightarrow \mathbf{N} \in \mathcal{H}]. \]

Thus it is enough to construct for each n a structure \mathbf{M}_n such that

- $\mathbf{M}_n \not\in \text{uHG(Semigroups)}$,
- if $\mathbf{N} \leq \mathbf{M}_n$ and $|\mathbf{N}| \leq n$, then $\mathbf{N} \in \text{uHG}(\mathcal{C})$.

Belinda’s guess
Maybe it lifts to a topological setting.
Boolean core of a uH-class

Boolean core of \mathcal{H} is

$$\mathcal{H}_{BC} = S_cP^+(\mathcal{H}_{fin})$$

\mathcal{H}_{fin} - finite structures from \mathcal{H} with the discrete topology
P^+ - the nontrivial product class operator
S_c - the closed substructure class operator

Example

Priestley spaces $= S_cP^+(\{0, 1\}, \leq) = SP^+(\{0, 1\}, \leq)_{BC}$.

Facts

- Every member of \mathcal{H}_{BC} has Boolean topology (compact, Hausdorff, totally disconnected).
- \mathcal{H}_{BC} consists of all profinite structures built, as inverse limits, from finite members of \mathcal{H}.
General problem
Axiomatize \mathcal{H}_{BC} among all structures with Boolean topology.
Theorem (Clark, Krauss)
Topological quasivarieties may be described by an extension of uH-logic imitating topological convergence.

But it is a nasty and awkward infinite logic.

Is there a better logic?
standardness

\mathcal{H} is standard if \mathcal{H}_{BC} consists of all Boolean topological structures with reducts in \mathcal{H}.

If \mathcal{H} is standard, then \mathcal{H}_{BC} is axiomatizable by uH-theory of \mathcal{H}.

Theorem (Numakura)
The variety of all semigroups is standard.

Theorem (Clark, Davey, Haviar, Pitkethly, Talukder)
Every variety with finitely determined syntactic congruences is standard.
Examples: all varieties of semigroups, monoids, groups, rings, varieties with definable principal congruences.

Theorem (Nešetřil, Pultr, Trotta)
Finitely generated uH-class of simple graphs is standard iff it is one of \emptyset, $SP(\bullet)$, $SP(\bullet \bullet)$, $SP(\bullet\bullet\bullet)$.
A (surjective) inverse system over ω is a collection of structures M_n, $n \in \omega$, together with (surjective) homomorphisms $\varphi_n: M_{n+1} \to M$. Its inverse limit is

$$\lim\leftarrow M_n = \{a \in \prod_{n \in \omega} M_n \mid (\forall n) \varphi_n(a(n+1)) = a(n)\}$$

with structure and (Boolean) topology inherited from the product $M = \lim\leftarrow M_n$ is pointwise non-separable with respect to \mathcal{H} if there is a predicate R and a tuple $\bar{b} \in M - R^M$ such that for every homomorphism $\psi: M_n \to N \in \mathcal{H}$ we have $\psi(\bar{b}(n)) \in R^N$.

Theorem (Clark, Davey, Jackson, Pitkethly)

Assume that $M = \lim\leftarrow M_n$, a surjective inverse limit of finite structures, is pointwise non-separable with respect to \mathcal{H} and every n-element substructure of M_n is in \mathcal{H}. Then \mathcal{H} is non-standard.
Theorem \((S, T)\)

Let \(\mathcal{H} = SP^+P \cup G(\mathcal{C})\) be the \(uH\)-class generated by a class \(G(\mathcal{C})\) of graphs of semigroups possessing a nontrivial member with a neutral element. Then \(\mathcal{H}\) is non-standard - \(\mathcal{H}_{BC}\) is not definable in \(uH\)-logic.

pseudoProof

Structures \(M_n\) from non-finite axiomatization proof may be slightly modified and connected by homomorphism, thus giving a needed inverse system.
Maybe H_{BC} is fo-definable?

Example (Clark, Davey, Jackson, Pitkethly)
Let L be a finite structure with a lattice reduct. Then $S_cP(L)$ is first order definable. But there are some non-standard $S_cP(L)$.

Example (Stralka, Clark, Davey, Jackson, Pitkethly)
Priestley spaces form a non-fo definable class.

pseudoProof
Because there exists Stralka space (C, \leq):
- C - Cantor space
- \leq - cover or equal relation

(C, \leq) is a union of copies of $(\{0\}, \equiv)$ and $(\{0, 1\}, \leq)$ but it is **NOT** a Priestley space.
A topological space is a λ-space, $\lambda \in \mathbb{N}$, if it is a disjoint union of at most λ pieces each of which is either a one point or one point compactification of a discrete topological space.

Theorem (Clark, Davey, Jackson, Pitkethly)

Let \mathcal{H} be non-standard, witnessed by \mathbf{M} (\mathbf{M} has Boolean topology an the relational reduct in \mathcal{H}). If

- up to isomorphism, \mathbf{M} has only finitely many connected components and all them are finite (1st technique)

or

- \mathbf{M} has a λ-topology + some technical condition (2nd technique)

then \mathcal{H}_{BC} is not fo-definable.
Theorem \((S, T)\)

Let \(\mathcal{H} = \text{SP}^+ \cup G(C)\) be the uH-class generated by a class \(G(C)\) of graphs of semigroups possessing a nontrivial member with a neutral element. Then \(\mathcal{H}_{BC}\) is not fo-definable.

pseudoProof

- If \(\{0, 1\}, \lor\) \(\in C\), then 1\(^{st}\) technique applies to a modification of Stralka space.

- If \((\mathbb{Z}_k, +) \in C\) or \((\mathbb{N}, +) \in C\), then 2\(^{nd}\) technique applies to \(M\) constructed for disproving standardness.
General problem
Axiomatize \mathcal{H}_{BC} among all structures with Boolean topology.

What about monadic second order logic?
This is all Thank you!