### Natural extension of median algebras

Bruno Teheux joint work with Georges Hansoul

University of Luxembourg

#### Back to the roots: canonical extension

Canonical extension  $\mathbf{L}^{\delta}$  of a bounded DL  $\mathbf{L}$  with topologies  $\iota$  and  $\delta$  :

- ▶  $\mathbf{L}^{\delta}$  is doubly algebraic.
- ightharpoonup  $L \hookrightarrow L^{\delta}$ .
- ▶ **L** is dense in  $\mathbf{L}_{\iota}^{\delta}$ .
- ▶ **L** is dense and discrete in  $\mathbf{L}_{\delta}^{\delta}$ .

JÓNSSON-TARSKI (1951), GEHRKE and JÓNSSON (1994)..., GEHRKE and HARDING (2011), GEHRKE and VOSMAER (2011), DAVEY and PRIESTLEY (2011)... A tool to extend maps in a canonical way comes with the topology  $\delta$ 



 $f^{\delta}$  can be defined by order and continuity properties.

Leads to canonical extension of lattice-based algebras.

Tool used to obtain canonicity of logics. JÓNSSON (1994).

# A tool to extend maps in a canonical way comes with the topology $\boldsymbol{\delta}$



 $f^{\delta}$  can be defined by order and continuity properties.

Leads to canonical extension of lattice-based algebras.

Tool used to obtain canonicity of logics. JÓNSSON (1994).

# It is possible to generalize canonical extension to non lattice-based algebras

| Step 1                                              | Step 2                                       |
|-----------------------------------------------------|----------------------------------------------|
| Define the natural extension of an <b>algebra</b>   | Define the natural extension of a <b>map</b> |
| Davey, Gouveia,<br>Haviar and Priest-<br>Ley (2011) | A partial solution                           |

### We adopt the settings of natural dualities

# A finite algebra ${\bf M}$ A discrete alter-ego topological structure ${\underline{\cal M}}$

We assume that  $\underline{\mathcal{M}}$  yields a duality for  $\mathcal{A}$ . We focus on objects.

| Algebra                                     | Topology                                                                               |
|---------------------------------------------|----------------------------------------------------------------------------------------|
| M                                           | M                                                                                      |
| $\mathcal{A} = \mathbb{ISP}(\mathbf{M})$    | $\mathcal{X} = \mathbb{IS}_{\boldsymbol{c}}\mathbb{P}^+(\boldsymbol{\mathit{M}})$      |
| A                                           | $\mathbf{A}^* = \mathcal{A}(\mathbf{A}, \mathbf{M}) \leq_{c} \mathcal{M}^{\mathbf{A}}$ |
| $X_* = \mathcal{X}(X, M) \leq \mathbf{M}^X$ | X                                                                                      |

$$(\boldsymbol{\mathsf{A}}^*)_* \simeq \boldsymbol{\mathsf{A}}$$

# Natural extension of an algebra can be constructed from its dual

| Canonical extension                                                                     | Natural extension                                                                                          |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| $\mathbf{L}^{\delta}$ is the algebra of order-preserving maps from $\mathbf{L}^*$ to 2. | $\mathbf{A}^{\delta}$ is the algebra of structure preserving maps from $\mathbf{A}^*$ to $\underline{M}$ . |

Davey, Gouveia, Haviar and Priestley (2011)

# The variety of median algebras will perfectly illustrate the construction

Median algebras are the  $(\cdot,\cdot,\cdot)\text{-subalgebras}$  of the distributive lattices where

$$(x,y,z)=(x\wedge y)\vee (x\wedge z)\vee (y\wedge z).$$

## The variety of median algebras will perfectly illustrate the construction

Median algebras are the  $(\cdot,\cdot,\cdot)\text{-subalgebras}$  of the distributive lattices where

$$(x,y,z)=(x\wedge y)\vee(x\wedge z)\vee(y\wedge z).$$
 $\mathcal{B}$  Boolean algebras  $\mathbb{SP}(\mathbf{2})$   $\mathbf{2}=\langle\{0,1\},\vee,\wedge,\neg,0,1\rangle$ 
 $\mathcal{D}$  Bounded DL  $\mathbb{SP}(\mathbf{2})$   $\mathbf{2}=\langle\{0,1\},\vee,\wedge,0,1\rangle)$ 
 $\mathcal{A}$  Median algebra  $\mathbb{SP}(\mathbf{2})$   $\mathbf{2}=\langle\{0,1\},(\cdot,\cdot,\cdot)\rangle$ 

On  $\{0,1\}$ , operation  $(\cdot,\cdot,\cdot)$  is the majority function.

### There is a natural duality for median algebras

$$\underline{2}:=\langle\{0,1\},\leq,\cdot^{\bullet},0,1,\iota\rangle.$$

| Algebra                                        | Topology                                                         |
|------------------------------------------------|------------------------------------------------------------------|
| 2                                              | 2                                                                |
| $\mathcal{A} = \mathbb{ISP}(2)$ is the variety | $\mathcal{X} = \mathbb{IS}_c \mathbb{P}^+(2)$ is the category of |
| of median algebras                             | bounded                                                          |
|                                                | strongly complemented                                            |
|                                                | PRIESTLEY spaces                                                 |

#### Proposition (ISBELL (1980), WERNER (1981))

- 1. Structure 2 yields a logarithmic duality for median algebras.
- 2. Operation  $\cdot^{\bullet}$  is an involutive order reversing homeomorphism such that  $0^{\bullet} = 1$  and  $x \leq x^{\bullet} \rightarrow x = 0$ .

### We may associate orders to a median algebra

Let 
$$a \in \mathbf{A} = \langle A, (\cdot, \cdot, \cdot) \rangle$$
. Define  $\leq_a$  on  $A$  by 
$$b \leq_a c \quad \text{if} \quad (a, b, c) = b.$$

Then  $\leq_a$  is a  $\wedge$ -semilattice order on A with  $b \wedge_a c = (a, b, c)$ .

Semillatices obtained in this way are the *median semilattices*.

#### **Proposition**

In a median semilattice, **principal** ideals are **distributive lattices**.

GRAU (1947), BIRKHOFF and KISS (1947), SHOLANDER (1952, 1954), ..., ISBELL (1980), BANDELT and HEDLÍKOVÁ (1983)...

# Natural extension completes everything it can complete

 $\mathbf{A}^{\delta} \equiv \text{the algebra of } \{\leq, 0, 1, \cdot^{\bullet}\}\text{-preserving maps from } \mathbf{A}^{*} \text{ to } \underline{2}.$ 

#### **Proposition**

Let  $a, b \in \mathbf{A}$ 

- 1.  $\langle \mathbf{A}^{\delta}, \wedge_{a} \rangle$  is a bounded complete  $\wedge_{a}$ -semilattice which is an extension of  $\langle \mathbf{A}, \wedge_{a} \rangle$ .
- 2.  $(b]_{\langle \mathbf{A}^{\delta}, \wedge_a \rangle}$  is a canonical extension of  $(b]_{\langle \mathbf{A}, \wedge_a \rangle}$ .

### We can define $\mathbf{A}$ in $\mathbf{A}^{\delta}$ in a purely topological language

$$\mathcal{X}_{p}(\mathbf{A}^{*}, \underline{2}) := \bigcup \{\mathcal{X}(\underline{\mathcal{F}}, \underline{2}) \mid \underline{\mathcal{F}} \leq_{c} \mathbf{A}^{*}\}.$$

Consider the topology  $\delta$  generated by the family  $\Delta$  of the

$$O_f = \{x \in \mathbf{A}^\delta \mid x \supseteq f\}, \quad f \in \mathcal{X}_p(\mathbf{A}^*, \underline{2}).$$

#### Lemma

- 1.  $\triangle$  is a topological basis of  $\delta$ .
- 2. **A** is dense and discrete in  $\mathbf{A}_{\delta}^{\delta}$ .

The lemma generalizes to any **logarithmic** dualities.

We use the topology  $\delta$  to canonically extend maps to multimaps



# We use the topology $\delta$ to canonically extend maps to multimaps



### We define the multi-extension of $f: \mathbf{A} \to \mathbf{B}$

$$ar{f}: \mathbf{A} 
ightarrow \Gamma(\mathbf{B}_{\iota}^{\delta}): a \mapsto \{f(a)\}.$$

**A** is dense in  $\mathbf{A}_{\delta}^{\delta}$  and  $\Gamma(\mathbf{B}_{\iota}^{\delta})$  is a complete lattice.

#### Definition

The multi-extension  $\tilde{f}$  of f is defined by

$$\widetilde{f}: \mathbf{A}_{\delta}^{\delta} \to \Gamma(\mathbf{B}_{\iota}^{\delta}): x \mapsto \mathrm{limsup}_{\delta}\overline{f}(x),$$

In other words, for any  $F \in \mathbf{B}^*$ ,

$$\widetilde{f}(x)\upharpoonright_{F} = \bigcap \{\{f(a)\upharpoonright_{F} \mid a \in V\} \mid V \in \delta_{X}\},$$

where the closure is computed in  $\mathbf{B}_{\iota}^{\delta}$ .

### The multi-extension is a continuous map

We say that f is *smooth* if  $\#\widetilde{f}(x) = 1$  for any  $x \in \mathbf{A}^{\delta}$ .

Let  $\sigma \downarrow$  be the *co-Scott* topology on  $\Gamma(\mathbf{B}_{\iota}^{\delta})$ .

Proposition (Generalizes to logarithmic dualities)

- 1. For any  $a \in A$ ,  $\widetilde{f}(a) = \{f(a)\}.$
- 2. The map  $\widetilde{f}: \mathbf{A}^{\delta} \to \Gamma(\mathbf{B}^{\delta}_{\iota})$  is  $(\delta, \sigma \downarrow)$ .
- 3. If  $f': \mathbf{A}^{\delta} \to \Gamma(\mathbf{B}^{\delta}_{\iota})$  satisfies 1 and 2 then  $\widetilde{f}(x) \subseteq f'(x)$  for every  $x \in \mathbf{A}^{\delta}$ .

### The multi-extension is a continuous map

We say that f is *smooth* if  $\#\widetilde{f}(x) = 1$  for any  $x \in \mathbf{A}^{\delta}$ .

Let  $\sigma \downarrow$  be the *co-Scott* topology on  $\Gamma(\mathbf{B}_{\iota}^{\delta})$ .

#### Proposition (Generalizes to logarithmic dualities)

- 1. For any  $a \in \mathbf{A}$ ,  $\widetilde{f}(a) = \{f(a)\}$ .
- 2. The map  $\widetilde{f}: \mathbf{A}^{\delta} \to \Gamma(\mathbf{B}^{\delta}_{\iota})$  is  $(\delta, \sigma \downarrow)$ .
- 3. If  $f': \mathbf{A}^{\delta} \to \Gamma(\mathbf{B}^{\delta}_{\iota})$  satisfies 1 and 2 then  $\widetilde{f}(x) \subseteq f'(x)$  for every  $x \in \mathbf{A}^{\delta}$ .
- 4. f is smooth if and only if it admits an  $(\delta, \iota)$ -continuous extension, namely  $f^{\delta} : \mathbf{A}^{\delta} \to \mathbf{B}^{\delta} : x \mapsto f^{\delta}(x) \in \widetilde{f}(x)$ .
- 5. If f is not smooth, there is no extension  $f': \mathbf{A}^{\delta} \to \mathbf{B}^{\delta}$  of f and that is  $(\delta, \iota)$ -continuous that satisfies  $f'(x) \in \widetilde{f}(x)$ .

# We can use $\leq_a$ to turn the multi-extension into an extension



#### Definition

Let  $b \in B$ . The map  $f_b^{\delta} : \mathbf{A}^{\delta} \to \mathbf{B}^{\delta}$  is defined by

$$f_b^\delta(x) = \bigwedge_b \widetilde{f}(x).$$

 $f^{\delta}$  is a continuous map

#### Proposition

- 1. The map  $f_b^{\delta}$  is  $(\delta, \iota_b \uparrow)$ -continuous.
- 2. If  $f: A \to A$  respects  $\wedge_a$  on finite subsets then  $f_b^{\delta}$  respects  $\wedge_a$  on any set.
- 3. For a median algebra, being a bounded DL is a property preserved by natural extension.
- 4. For a median algebra, being a Boolean algebra is a property preserved by natural extension.

### Among open questions/further work

- How to canonically extend maps if the duality fails to be logarithmic?
- Use continuity properties to study preservation of equations.
- Determine the links with profinite extension.
- Do something clever with that.