Natural extension of median algebras

Bruno Teheux
joint work with Georges Hansoul

University of Luxembourg
Back to the roots: canonical extension

Canonical extension L^δ of a bounded DL L with topologies ι and δ:

- L^δ is doubly algebraic.
- $L \hookrightarrow L^\delta$.
- L is dense in L^ι.
- L is dense and discrete in L^δ.

A tool to extend maps in a canonical way comes with the topology δ

f^δ can be defined by order and continuity properties.

Leads to canonical extension of lattice-based algebras.

Tool used to obtain canonicity of logics. JÓNSSON (1994).
A tool to extend maps in a canonical way comes with the topology δ

f^δ can be defined by order and continuity properties.

Leads to canonical extension of lattice-based algebras.

Tool used to obtain canonicity of logics. JÓNSSON (1994).
It is possible to generalize canonical extension to non lattice-based algebras

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define the natural extension of an algebra</td>
<td>Define the natural extension of a map</td>
</tr>
</tbody>
</table>

Davey, Gouveia, Haviar and **Priestley** (2011)
A partial solution
We adopt the settings of natural dualities

A finite algebra \mathbb{M}

A discrete alter-ego topological structure \mathcal{M}

We assume that \mathcal{M} yields a duality for \mathcal{A}. We focus on objects.

<table>
<thead>
<tr>
<th>Algebra</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{M}</td>
<td>\mathcal{M}</td>
</tr>
<tr>
<td>$\mathcal{A} = \text{ISP}(\mathbb{M})$</td>
<td>$\mathcal{X} = \text{IS}_{\mathbb{P}}^{c}(\mathcal{M})$</td>
</tr>
<tr>
<td>$\mathcal{A} \leq_c \mathcal{M}^\mathcal{A}$</td>
<td>$\mathcal{X} \leq \mathbb{M}^\mathcal{X}$</td>
</tr>
<tr>
<td>$\mathcal{X} \ast = \mathcal{A}(\mathcal{X}, \mathbb{M}) \leq \mathcal{M}^\mathcal{X}$</td>
<td></td>
</tr>
</tbody>
</table>

$(\mathcal{A}^\ast)_\ast \simeq \mathcal{A}$
Natural extension of an algebra can be constructed from its dual

<table>
<thead>
<tr>
<th>Canonical extension</th>
<th>Natural extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^δ is the algebra of order-preserving maps from L^* to $\mathcal{2}$.</td>
<td>A^δ is the algebra of structure preserving maps from A^* to M.</td>
</tr>
</tbody>
</table>

Davey, Gouveia, Haviar and Priestley (2011)
The variety of median algebras will perfectly illustrate the construction

Median algebras are the \((\cdot,\cdot,\cdot)\)-subalgebras of the distributive lattices where

\[(x, y, z) = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z).\]
The variety of median algebras will perfectly illustrate the construction

Median algebras are the \((\cdot, \cdot, \cdot)\)-subalgebras of the distributive lattices where

\[(x, y, z) = (x \land y) \lor (x \land z) \lor (y \land z).\]

\[B\] Boolean algebras \[\text{ISP}(2)\ 2 = \langle\{0, 1\}, \lor, \land, \neg, 0, 1\rangle\]

\[D\] Bounded DL \[\text{ISP}(2)\ 2 = \langle\{0, 1\}, \lor, \land, 0, 1\rangle\)

\[A\] Median algebra \[\text{ISP}(2)\ 2 = \langle\{0, 1\}, (\cdot, \cdot, \cdot)\rangle\]

On \(\{0, 1\}\), operation \((\cdot, \cdot, \cdot)\) is the majority function.
There is a natural duality for median algebras

\[\mathcal{Z} := \langle \{0, 1\}, \leq, \cdot, 0, 1, \iota \rangle. \]

<table>
<thead>
<tr>
<th>Algebra</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{A} = \text{ISP}(2)) is the variety of median algebras</td>
<td>(\mathcal{X} = \text{ISC}_{P^+}(2)) is the category of bounded strongly complemented Priestley spaces</td>
</tr>
</tbody>
</table>

Proposition (Isbell (1980), Werner (1981))

1. **Structure** \(\mathcal{Z} \) yields a logarithmic duality for median algebras.

2. **Operation** \(\cdot \) is an involutive order reversing homeomorphism such that \(0^\bullet = 1 \) and \(x \leq x^\bullet \rightarrow x = 0 \).
We may associate orders to a median algebra

Let \(a \in A = \langle A, (\cdot, \cdot, \cdot) \rangle \). Define \(\leq_a \) on \(A \) by

\[
b \leq_a c \quad \text{if} \quad (a, b, c) = b.
\]

Then \(\leq_a \) is a \(\land \)-semilattice order on \(A \) with \(b \land_a c = (a, b, c) \).

Semilattices obtained in this way are the median semilattices.

Proposition

In a median semilattice, principal ideals are distributive lattices.

Natural extension completes everything it can complete

\(A^\delta \equiv \) the algebra of \(\{\leq, 0, 1, \cdot\} \)-preserving maps from \(A^* \) to \(\mathcal{Z} \).

Proposition

Let \(a, b \in A \)

1. \(\langle A^\delta, \land_a \rangle \) is a bounded complete \(\land_a \)-semilattice which is an extension of \(\langle A, \land_a \rangle \).

2. \((b]\langle A^\delta, \land_a \rangle \) is a canonical extension of \((b]\langle A, \land_a \rangle \).
We can define \mathbf{A} in \mathbf{A}^δ in a purely topological language

$$\chi_p(\mathbf{A}^*, 2) := \bigcup \{ \chi(F, 2) \mid F \leq_c \mathbf{A}^\ast \}.$$

Consider the topology δ generated by the family Δ of the

$$O_f = \{ x \in \mathbf{A}^\delta \mid x \supseteq f \}, \quad f \in \chi_p(\mathbf{A}^*, 2).$$

Lemma

1. Δ is a topological basis of δ.
2. \mathbf{A} is dense and discrete in \mathbf{A}^δ.

The lemma generalizes to any logarithmic dualities.
We use the topology δ to canonically extend maps to multimaps

$$f : A \rightarrow B$$
We use the topology δ to canonically extend maps to multimaps

$$\tilde{f} : A^\delta \to \Gamma(B^\delta)$$

$$f : A \to B$$
We define the multi-extension of $f : A \to B$

\[
\bar{f} : A \to \Gamma(B^\delta_l) : a \mapsto \{f(a)\}.
\]

A is dense in A^δ_δ and $\Gamma(B^\delta_l)$ is a complete lattice.

Definition
The *multi-extension* \tilde{f} of f is defined by

\[
\tilde{f} : A^\delta_\delta \to \Gamma(B^\delta_l) : x \mapsto \limsup_\delta \bar{f}(x),
\]

In other words, for any $F \subseteq B^*$,

\[
\tilde{f}(x)^F = \bigcap\{\{f(a)^F \mid a \in V\} \mid V \in \delta_x\},
\]

where the closure is computed in B^δ_l.
The multi-extension is a continuous map

We say that f is smooth if $\#\tilde{f}(x) = 1$ for any $x \in A^\delta$.

Let $\sigma \downarrow$ be the co-Scott topology on $\Gamma(B^\delta_\iota)$.

Proposition (Generalizes to logarithmic dualities)

1. For any $a \in A$, $\tilde{f}(a) = \{f(a)\}$.
2. The map $\tilde{f} : A^\delta \to \Gamma(B^\delta_\iota)$ is $(\delta, \sigma \downarrow)$.
3. If $f' : A^\delta \to \Gamma(B^\delta_\iota)$ satisfies 1 and 2 then $\tilde{f}(x) \subseteq f'(x)$ for every $x \in A^\delta$.
The multi-extension is a continuous map

We say that f is smooth if $\#\tilde{f}(x) = 1$ for any $x \in A^\delta$.

Let $\sigma \downarrow$ be the co-Scott topology on $\Gamma(B^\delta_i)$.

Proposition (Generalizes to logarithmic dualities)

1. For any $a \in A$, $\tilde{f}(a) = \{f(a)\}$.

2. The map $\tilde{f} : A^\delta \to \Gamma(B^\delta_i)$ is $(\delta, \sigma \downarrow)$.

3. If $f' : A^\delta \to \Gamma(B^\delta_i)$ satisfies 1 and 2 then $\tilde{f}(x) \subseteq f'(x)$ for every $x \in A^\delta$.

4. f is smooth if and only if it admits an (δ, ι)-continuous extension, namely $f^\delta : A^\delta \to B^\delta : x \mapsto f^\delta(x) \in \tilde{f}(x)$.

5. If f is not smooth, there is no extension $f' : A^\delta \to B^\delta$ of f and that is (δ, ι)-continuous that satisfies $f'(x) \in \tilde{f}(x)$.

We can use \leq_a to turn the multi-extension into an extension

Definition

Let $b \in B$. The map $f_b^\delta : A^\delta \to B^\delta$ is defined by

$$f_b^\delta(x) = \bigwedge_b \tilde{f}(x).$$
Proposition

1. *The map* \(f^\delta_b \) *is* \((\delta, \nu_b \uparrow)\)-*continuous.*

2. *If* \(f : A \to A \) *respects* \(\wedge_a \) *on finite subsets then* \(f^\delta_b \) *respects* \(\wedge_a \) *on any set.*

3. *For a median algebra, being a bounded DL is a property preserved by natural extension.*

4. *For a median algebra, being a Boolean algebra is a property preserved by natural extension.*
Among open questions/further work

- How to canonically extend maps if the duality fails to be logarithmic?
- Use continuity properties to study preservation of equations.
- Determine the links with profinite extension.
- Do something clever with that.