Selective for $\mathcal R$ but not Ramsey for $\mathcal R$

Timothy Onofre Trujillo

University of Denver
BLAST 2013 – Chapman University

August 9, 2013

Outline

- Background
 - Notation
 - Selective ultrafilters on ω
- Topological Ramsey Theory
 - Definition of a topological Ramsey space
 - The topological Ramsey space \mathcal{R}_1 .
 - The topological Ramsey space \mathcal{R}^{\star}
- Selective but not Ramsey ultrafilters
 - \bullet \mathcal{R}_1
 - \bullet \mathcal{R}_n

For each $S \subseteq \omega^{<\omega}$,

$$[S] = \{ s \in S : \forall t \in S, s \sqsubseteq t \Rightarrow s = t \}$$
$$cl(S) = \{ t \in \omega^{<\omega} : t \sqsubseteq s \in S \}$$
$$\pi_0(S) = \{ s_0 : s \in S \}$$

S is a **Tree on** ω , if cl(S) = S.

For $s, t \in \omega^{<\omega}$,

$$s \le t \Leftrightarrow (s \sqsubseteq t \text{ or } |s| = |t| \& s \le_{\text{lex}} t)$$

If S and T are trees on ω then

$$\binom{T}{S} = \{ U \subseteq T : U \cong S \}.$$

Let $\mathcal U$ be an ultrafilter on ω .

Let \mathcal{U} be an ultrafilter on ω .

1 \mathcal{U} is **selective** if for each sequence $A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ of members of \mathcal{U} , there exists $A = \{a_0, a_1, \dots\} \in \mathcal{U}$ such that for each $n < \omega$,

$$A\setminus\{a_0,a_1,\ldots,a_{n-1}\}\subseteq A_n.$$

Let \mathcal{U} be an ultrafilter on ω .

① \mathcal{U} is **selective** if for each sequence $A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ of members of \mathcal{U} , there exists $A = \{a_0, a_1, \ldots\} \in \mathcal{U}$ such that for each $n < \omega$,

$$A\setminus\{a_0,a_1,\ldots,a_{n-1}\}\subseteq A_n.$$

② \mathcal{U} is **Ramsey** if for each map $F : [\omega]^n \to 2$ there exists $A \in \mathcal{U}$ such that F is constant on $[A]^n$

Let \mathcal{U} be an ultrafilter on ω .

1 \mathcal{U} is **selective** if for each sequence $A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ of members of \mathcal{U} , there exists $A = \{a_0, a_1, \dots\} \in \mathcal{U}$ such that for each $n < \omega$,

$$A\setminus\{a_0,a_1,\ldots,a_{n-1}\}\subseteq A_n.$$

2 \mathcal{U} is **Ramsey** if for each map $F: [\omega]^n \to 2$ there exists $A \in \mathcal{U}$ such that F is constant on $[A]^n$

Theorem (Kunen, [1])

Let \mathcal{U} be an ultrafilter on ω .

 \mathcal{U} is selective if and only if \mathcal{U} is Ramsey.

Let (\mathcal{R}, \leq, r) be a triple,

Let (\mathcal{R}, \leq, r) be a triple, where \mathcal{R} is nonempty,

Let (\mathcal{R},\leq,r) be a triple, where \mathcal{R} is nonempty, where \leq is a quasi-ordering on \mathcal{R} and

Let (\mathcal{R}, \leq, r) be a triple, where \mathcal{R} is nonempty, where \leq is a quasi-ordering on \mathcal{R} and where

$$r: \mathcal{R} \times \omega \to \mathcal{A}\mathcal{R}$$

is a mapping giving us the sequence $(r_n(\cdot) = r(\cdot, n))$ of approximation mappings.

Let (\mathcal{R}, \leq, r) be a triple, where \mathcal{R} is nonempty, where \leq is a quasi-ordering on \mathcal{R} and where

$$r: \mathcal{R} \times \omega \to \mathcal{A}\mathcal{R}$$

is a mapping giving us the sequence $(r_n(\cdot) = r(\cdot, n))$ of approximation mappings.

For $s \in \mathcal{AR}$ and $X \in \mathcal{R}$ let

$$[s,X] = \{Y \in \mathcal{R} : Y \leq X \& (\exists n) \ s = r_n(Y)\}.$$

4□ > 4□ > 4 = > 4 = > = 90

Let (\mathcal{R}, \leq, r) be a triple, where \mathcal{R} is nonempty, where \leq is a quasi-ordering on \mathcal{R} and where

$$r: \mathcal{R} \times \omega \to \mathcal{A}\mathcal{R}$$

is a mapping giving us the sequence $(r_n(\cdot) = r(\cdot, n))$ of approximation mappings.

For $s \in \mathcal{AR}$ and $X \in \mathcal{R}$ let

$$[s,X] = \{Y \in \mathcal{R} : Y \leq X \& (\exists n) \ s = r_n(Y)\}.$$

The **Ellentuck topology on** $\mathcal R$ is the topology generated by the collection

$$\{[s,X]:s\in\mathcal{AR},X\in\mathcal{R}\}.$$

Let (\mathcal{R}, \leq, r) be a triple, where \mathcal{R} is nonempty, where \leq is a quasi-ordering on \mathcal{R} and where

$$r: \mathcal{R} \times \omega \to \mathcal{A}\mathcal{R}$$

is a mapping giving us the sequence $(r_n(\cdot) = r(\cdot, n))$ of approximation mappings.

For $s \in \mathcal{AR}$ and $X \in \mathcal{R}$ let

$$[s,X] = \{Y \in \mathcal{R} : Y \leq X \& (\exists n) \ s = r_n(Y)\}.$$

The **Ellentuck topology on** \mathcal{R} is the topology generated by the collection

$$\{[s,X]:s\in\mathcal{AR},X\in\mathcal{R}\}.$$

Example (The Ellentuck Space, $([\omega]^{\omega}, \subseteq, r)$)

$$r_n(\{a_0, a_1, a_2, \dots\}) = \{a_0, \dots, a_{n-1}\}$$

A subset \mathcal{X} of \mathcal{R} is **Ramsey** if for every nonempty [s,X], there is a $Y \in [s,X]$ such that $[s,Y] \subseteq \mathcal{X}$ or $[s,Y] \cap \mathcal{X} = \emptyset$.

A subset \mathcal{X} of \mathcal{R} is **Ramsey** if for every nonempty [s,X], there is a $Y \in [s,X]$ such that $[s,Y] \subseteq \mathcal{X}$ or $[s,Y] \cap \mathcal{X} = \emptyset$.

 \mathcal{X} is **Ramsey null** if for every nonempty [s, X], there exists $Y \in [s, X]$ such that $[s, Y] \cap \mathcal{X} = \emptyset$.

A subset \mathcal{X} of \mathcal{R} is **Ramsey** if for every nonempty [s,X], there is a $Y \in [s,X]$ such that $[s,Y] \subseteq \mathcal{X}$ or $[s,Y] \cap \mathcal{X} = \emptyset$.

 \mathcal{X} is **Ramsey null** if for every nonempty [s,X], there exists $Y \in [s,X]$ such that $[s,Y] \cap \mathcal{X} = \emptyset$.

A triple (\mathcal{R}, \leq, r) is a **topological Ramsey space** if every subset of \mathcal{R} with the Baire property is Ramsey and if every meager subset of \mathcal{R} is Ramsey null.

A subset \mathcal{X} of \mathcal{R} is **Ramsey** if for every nonempty [s,X], there is a $Y \in [s, X]$ such that $[s, Y] \subseteq \mathcal{X}$ or $[s, Y] \cap \mathcal{X} = \emptyset$.

 \mathcal{X} is **Ramsey null** if for every nonempty [s,X], there exists $Y \in [s,X]$ such that $[s, Y] \cap \mathcal{X} = \emptyset$.

A triple (\mathcal{R}, \leq, r) is a **topological Ramsey space** if every subset of \mathcal{R} with the Baire property is Ramsey and if every meager subset of \mathcal{R} is Ramsey null.

The Ellentuck Theorem (Ellentuck, [3])

The Ellentuck space ($[\omega]^{\omega}, \subseteq, r$) is a topological Ramsey space.

For each $n < \omega$, let

$$T_1(n) = \{\langle \ \rangle \,, \langle n \rangle \,, \langle n, i \rangle : i \leq n \}.$$

)

For each $n < \omega$, let

$$T_1(n) = \{\langle \rangle, \langle n \rangle, \langle n, i \rangle : i \leq n\}.$$

For each $n < \omega$, let

$$T_1(n) = \{\langle \rangle, \langle n \rangle, \langle n, i \rangle : i \leq n\}.$$

For each $n < \omega$, let

$$T_1(n) = \{\langle \ \rangle, \langle n \rangle, \langle n, i \rangle : i \leq n\}.$$

$$T_1 = \bigcup_{n < \omega} T_1(n)$$

$$\mathcal{R}_1 = \begin{pmatrix} T_1 \\ T_1 \end{pmatrix}.$$

$$\mathcal{R}_1 = \begin{pmatrix} T_1 \\ T_1 \end{pmatrix}$$
.

For each $S \in \mathcal{R}_1$ and each $i < \omega$

$$\mathcal{R}_1 = \begin{pmatrix} T_1 \\ T_1 \end{pmatrix}$$
.

For each $S \in \mathcal{R}_1$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

$$\mathcal{R}_1 = \begin{pmatrix} T_1 \\ T_1 \end{pmatrix}$$
.

For each $S \in \mathcal{R}_1$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

$$S(i) = \{s \in S : \pi_0(s) = k_i\} \cup \{\langle \rangle \}$$

$$\mathcal{R}_1 = \begin{pmatrix} T_1 \\ T_1 \end{pmatrix}$$
.

For each $S \in \mathcal{R}_1$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

$$S(i) = \{s \in S : \pi_0(s) = k_i\} \cup \{\langle \rangle\}$$

$$r_i(S) = \bigcup_{j < i} S(j).$$

$$\mathcal{R}_1 = \begin{pmatrix} T_1 \\ T_1 \end{pmatrix}$$
.

For each $S \in \mathcal{R}_1$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

$$S(i) = \{s \in S : \pi_0(s) = k_i\} \cup \{\langle \rangle\}$$

$$r_i(S) = \bigcup_{j < i} S(j).$$

For $\mathcal{S},\,\mathcal{T}\in\mathcal{R}_1$,

 $S \leq T$ if and only if S is a subtree of T.

$$\mathcal{R}_1 = \begin{pmatrix} T_1 \\ T_1 \end{pmatrix}$$
.

For each $S \in \mathcal{R}_1$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

$$S(i) = \{s \in S : \pi_0(s) = k_i\} \cup \{\langle \rangle\}$$

$$r_i(S) = \bigcup_{j < i} S(j).$$

For $\mathcal{S},\,\mathcal{T}\in\mathcal{R}_1$,

 $S \leq T$ if and only if S is a subtree of T.

Theorem (Dobrinen, Todorcevic, [2])

 (\mathcal{R}_1, \leq, r) is a topological Ramsey space.

Let $\mathcal U$ be an ultrafilter on $[\mathcal T_1]$ and $\mathcal C\subseteq \mathcal R_1.$

Let \mathcal{U} be an ultrafilter on $[T_1]$ and $\mathcal{C} \subseteq \mathcal{R}_1$.

 $\mbox{\Large 0}$ $\mbox{\Large \mathcal{U}}$ is generated by $\mbox{\Large \mathcal{C}},$ if

 $\{[A]:A\in\mathcal{C}\}$ is cofinal in (\mathcal{U},\supseteq) .

Let \mathcal{U} be an ultrafilter on $[T_1]$ and $\mathcal{C} \subseteq \mathcal{R}_1$.

- $oldsymbol{0}$ \mathcal{U} is generated by \mathcal{C} , if
 - $\{[A]:A\in\mathcal{C}\}$ is cofinal in (\mathcal{U},\supseteq) .
- ② \mathcal{U} is **selective for** \mathcal{R}_1 , if for each sequence $A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ of members of \mathcal{C} , there exists $A \in \mathcal{C}$ such that for each $n < \omega$,

$$A \setminus r_n(A) \subseteq A_n$$
.

Let \mathcal{U} be an ultrafilter on $[T_1]$ and $\mathcal{C} \subseteq \mathcal{R}_1$.

- $oldsymbol{0}$ \mathcal{U} is generated by \mathcal{C} , if
 - $\{[A]:A\in\mathcal{C}\}$ is cofinal in (\mathcal{U},\supseteq) .
- ② \mathcal{U} is **selective for** \mathcal{R}_1 , if for each sequence $A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ of members of \mathcal{C} , there exists $A \in \mathcal{C}$ such that for each $n < \omega$,

$$A \setminus r_n(A) \subseteq A_n$$
.

3 \mathcal{U} is **Ramsey for** \mathcal{R}_1 , if for map $F : \mathcal{AR}_n \to 2$ there exists $A \in \mathcal{C}$ such that F is constant on $\mathcal{AR}_n | A = \{r_n(B) : B \le A\}$.

For $S, T \in \mathcal{R}_1$, $S \leq^* T \iff (\exists i < \omega)(S \setminus r_i(S) \subseteq T)$.

For
$$S, T \in \mathcal{R}_1$$
, $S \leq^* T \iff (\exists i < \omega)(S \setminus r_i(S) \subseteq T)$.

Theorem (Mijares,[5])

If C is a (\mathcal{R}_1, \leq^*) -generic filter then C generates a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$.

For
$$S, T \in \mathcal{R}_1$$
, $S \leq^* T \iff (\exists i < \omega)(S \setminus r_i(S) \subseteq T)$.

Theorem (Mijares,[5])

If C is a (\mathcal{R}_1, \leq^*) -generic filter then C generates a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$.

Theorem (Mijares,[5])

If \mathcal{U} is Ramsey for \mathcal{R}_1 then \mathcal{U} is selective for \mathcal{R}_1 .

For $S, T \in \mathcal{R}_1$, $S \leq^* T \iff (\exists i < \omega)(S \setminus r_i(S) \subseteq T)$.

Theorem (Mijares,[5])

If C is a (\mathcal{R}_1, \leq^*) -generic filter then C generates a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$.

Theorem (Mijares,[5])

If \mathcal{U} is Ramsey for \mathcal{R}_1 then \mathcal{U} is selective for \mathcal{R}_1 .

Question

Is Ramsey for \mathcal{R}_1 equivalent to selective for \mathcal{R}_1 ?

4□ > 4□ > 4 = > 4 = > = 90

For $S, T \in \mathcal{R}_1$, $S \leq^* T \iff (\exists i < \omega)(S \setminus r_i(S) \subseteq T)$.

Theorem (Mijares,[5])

If C is a (\mathcal{R}_1, \leq^*) -generic filter then C generates a Ramsey for \mathcal{R}_1 ultrafilter on $[T_1]$.

Theorem (Mijares,[5])

If \mathcal{U} is Ramsey for \mathcal{R}_1 then \mathcal{U} is selective for \mathcal{R}_1 .

Question

Is Ramsey for \mathcal{R}_1 equivalent to selective for \mathcal{R}_1 ?

Lemma (Follows from work of Laflamme, [4])

If \mathcal{U} is Ramsey for \mathcal{R}_1 then \mathcal{U} is weakly-Ramsey.

Let $\{t_0,t_1,t_2,\dots\}$ be an increasing enumeration of $[\mathcal{T}_1]$.

Let $\{t_0, t_1, t_2, \dots\}$ be an increasing enumeration of $[T_1]$. For each $n < \omega$, let

$$T_1^{\star}(n) = cl\left(\{\langle n \rangle^{\frown} t_i : i \leq n\}\right).$$

(□) (□) (□) (□) (□) (□) (□)

Let $\{t_0, t_1, t_2, \dots\}$ be an increasing enumeration of $[T_1]$. For each $n < \omega$, let

$$T_1^{\star}(n) = cl(\{\langle n \rangle ^{\frown} t_i : i \leq n\}).$$

n< ω

Let $\{t_0, t_1, t_2, \dots\}$ be an increasing enumeration of $[T_1]$. For each $n < \omega$, let

$$T_1^{\star}(n) = cl(\{\langle n \rangle ^{\frown} t_i : i \leq n\}).$$

$$T_1^{\star} = \bigcup_{n < \omega} T_1^{\star}(n)$$

Let $\{t_0, t_1, t_2, \dots\}$ be an increasing enumeration of $[T_1]$. For each $n < \omega$, let

$$T_1^{\star}(n) = cl(\{\langle n \rangle ^{\frown} t_i : i \leq n\}).$$

$$T_1^{\star} = \bigcup_{n < \omega} T_1^{\star}(n)$$

Let $\{t_0, t_1, t_2, \dots\}$ be an increasing enumeration of $[T_1]$. For each $n < \omega$, let

$$T_1^{\star}(n) = cl(\{\langle n \rangle \widehat{t}_i : i \leq n\}).$$

$$T_1^{\star} = \bigcup_{n < \omega} T_1^{\star}(n)$$

Let $\{t_0, t_1, t_2, \dots\}$ be an increasing enumeration of $[T_1]$. For each $n < \omega$, let

$$T_1^{\star}(n) = cl(\{\langle n \rangle^{\frown} t_i : i \leq n\}).$$

Let $\{t_0, t_1, t_2, \dots\}$ be an increasing enumeration of $[T_1]$. For each $n < \omega$, let

$$T_1^{\star}(n) = cl(\{\langle n \rangle^{\frown} t_i : i \leq n\}).$$

$$\mathcal{R}_1^{\star} = \begin{pmatrix} T_1^{\star} \\ T_1^{\star} \end{pmatrix}.$$

$$\mathcal{R}_1^{\star} = \begin{pmatrix} T_1^{\star} \\ T_1^{\star} \end{pmatrix}$$
.

For each $S \in \mathcal{R}_1^\star$ and each $i < \omega$

$$\mathcal{R}_1^{\star} = \begin{pmatrix} T_1^{\star} \\ T_1^{\star} \end{pmatrix}.$$

For each $S \in \mathcal{R}_1^\star$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

$$\mathcal{R}_1^{\star} = \begin{pmatrix} \mathcal{T}_1^{\star} \\ \mathcal{T}_1^{\star} \end{pmatrix}.$$

For each $S \in \mathcal{R}_1^\star$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

 $S(i) = \{s \in S : \pi_0(s) = k_i\} \cup \{\langle \rangle \}$

$$\mathcal{R}_1^{\star} = \begin{pmatrix} \mathcal{T}_1^{\star} \\ \mathcal{T}_1^{\star} \end{pmatrix}.$$

For each $S \in \mathcal{R}_1^\star$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

$$S(i) = \{s \in S : \pi_0(s) = k_i\} \cup \{\langle \rangle\}$$

$$r_i(S) = \bigcup_{j < i} S(j).$$

$$\mathcal{R}_1^{\star} = \begin{pmatrix} \mathcal{T}_1^{\star} \\ \mathcal{T}_1^{\star} \end{pmatrix}.$$

For each $S \in \mathcal{R}_1^{\star}$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

$$S(i) = \{s \in S : \pi_0(s) = k_i\} \cup \{\langle \rangle\}$$

$$r_i(S) = \bigcup_{j < i} S(j).$$

For $S, T \in \mathcal{R}_1^*$,

S < T if and only if S is a subtree of T.

$$\mathcal{R}_1^{\star} = \begin{pmatrix} \mathcal{T}_1^{\star} \\ \mathcal{T}_1^{\star} \end{pmatrix}.$$

For each $S \in \mathcal{R}_1^{\star}$ and each $i < \omega$, let

$$\pi_0(S) = \{k_0, k_1, k_2, \dots\}$$

$$S(i) = \{s \in S : \pi_0(s) = k_i\} \cup \{\langle \rangle\}$$

$$r_i(S) = \bigcup_{j < i} S(j).$$

For $S, T \in \mathcal{R}_1^*$,

S < T if and only if S is a subtree of T.

Theorem (T.)

 $(\mathcal{R}_1^{\star}, \leq, r)$ is a topological Ramsey space.

If C is a $(\mathcal{R}_1^{\star}, \leq^*)$ -generic filter then C generates a Ramsey for \mathcal{R}_1^{\star} ultrafilter on $[T_1^{\star}]$.

If C is a $(\mathcal{R}_1^{\star}, \leq^*)$ -generic filter then C generates a Ramsey for \mathcal{R}_1^{\star} ultrafilter on $[T_1^*]$.

Definition

Let $\{s_0, s_1, s_2, \dots\}$ be the increasing enumeration of $[T_1^{\star}]$.

If C is a $(\mathcal{R}_1^{\star}, \leq^*)$ -generic filter then C generates a Ramsey for \mathcal{R}_1^{\star} ultrafilter on $[T_1^*]$.

Definition

Let $\{s_0, s_1, s_2, \dots\}$ be the increasing enumeration of $[T_1^{\star}]$.

$$\delta: [T_1^{\star}] \to [T_1]$$
 and $\Gamma: \mathcal{R}_1^{\star} \to \mathcal{R}_1$

If C is a $(\mathcal{R}_1^{\star}, \leq^*)$ -generic filter then C generates a Ramsey for \mathcal{R}_1^{\star} ultrafilter on $[T_1^*]$.

Definition

Let $\{s_0, s_1, s_2, \dots\}$ be the increasing enumeration of $[T_1^*]$.

$$\delta: [T_1^{\star}] \to [T_1] \text{ and } \Gamma: \mathcal{R}_1^{\star} \to \mathcal{R}_1$$

$$\delta(s_j) = t_j \text{ and } \Gamma(S) = cl(\delta''[S])$$

If C is a $(\mathcal{R}_1^*, \leq^*)$ -generic filter then $\Gamma''C$ generates an ultrafilter on $[T_1]$ which is selective for \mathcal{R}_1 but not Ramsey for \mathcal{R}_1 .

If C is a $(\mathcal{R}_1^*, \leq^*)$ -generic filter then $\Gamma''C$ generates an ultrafilter on $[T_1]$ which is selective for \mathcal{R}_1 but not Ramsey for \mathcal{R}_1 .

Proof.

Let $\mathcal U$ be the ultrafilter on $[T_1^\star]$ generated by $\mathcal C.$

If C is a $(\mathcal{R}_1^{\star}, \leq^*)$ -generic filter then $\Gamma''C$ generates an ultrafilter on $[T_1]$ which is selective for \mathcal{R}_1 but not Ramsey for \mathcal{R}_1 .

Proof.

Let \mathcal{U} be the ultrafilter on $[T_1^{\star}]$ generated by \mathcal{C} . $\delta(\mathcal{U})$ is an ultrafilter on $[T_1]$ generated by $\Gamma''\mathcal{C}$.

If C is a $(\mathcal{R}_1^*, \leq^*)$ -generic filter then $\Gamma''C$ generates an ultrafilter on $[T_1]$ which is selective for \mathcal{R}_1 but not Ramsey for \mathcal{R}_1 .

Proof.

Let $\mathcal U$ be the ultrafilter on $[T_1^\star]$ generated by $\mathcal C$. $\delta(\mathcal U)$ is an ultrafilter on $[T_1]$ generated by $\Gamma''\mathcal C$.

$$\Gamma(A_0) \supseteq \Gamma(A_1) \supseteq \Gamma(A_2) \supseteq \dots$$

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$$

$$\exists A \in \mathcal{C}, \ \forall i < \omega, \ A \setminus r_i(A) \subseteq A_i$$

$$\forall i < \omega, \ \Gamma(A) \setminus r_i(\Gamma(A)) \subseteq \Gamma(A_i)$$

If C is a $(\mathcal{R}_1^*, \leq^*)$ -generic filter then $\Gamma''C$ generates an ultrafilter on $[T_1]$ which is selective for \mathcal{R}_1 but not Ramsey for \mathcal{R}_1 .

Proof.

Let \mathcal{U} be the ultrafilter on $[T_1^{\star}]$ generated by \mathcal{C} . $\delta(\mathcal{U})$ is an ultrafilter on $[T_1]$ generated by $\Gamma''\mathcal{C}$.

$$\Gamma(A_0) \supseteq \Gamma(A_1) \supseteq \Gamma(A_2) \supseteq \dots$$

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$$

$$\exists A \in \mathcal{C}, \ \forall i < \omega, \ A \setminus r_i(A) \subseteq A_i$$

$$\forall i < \omega, \ \Gamma(A) \setminus r_i(\Gamma(A)) \subseteq \Gamma(A_i)$$

Let $F:[T_1]^2\to 3$ be the map such that $F\{s,t\}$ is the length of the longest common initial segment of $\delta^{-1}(s)$ and $\delta^{-1}(t)$.

If C is a $(\mathcal{R}_1^*, \leq^*)$ -generic filter then $\Gamma''C$ generates an ultrafilter on $[T_1]$ which is selective for \mathcal{R}_1 but not Ramsey for \mathcal{R}_1 .

Proof.

Let \mathcal{U} be the ultrafilter on $[T_1^{\star}]$ generated by \mathcal{C} . $\delta(\mathcal{U})$ is an ultrafilter on $[T_1]$ generated by $\Gamma''\mathcal{C}$.

$$\Gamma(A_0) \supseteq \Gamma(A_1) \supseteq \Gamma(A_2) \supseteq \dots$$

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$$

$$\exists A \in \mathcal{C}, \ \forall i < \omega, \ A \setminus r_i(A) \subseteq A_i$$

$$\forall i < \omega, \ \Gamma(A) \setminus r_i(\Gamma(A)) \subseteq \Gamma(A_i)$$

Let $F: [T_1]^2 \to 3$ be the map such that $F\{s,t\}$ is the length of the longest common initial segment of $\delta^{-1}(s)$ and $\delta^{-1}(t)$. For each $A \in \mathcal{C}$, F does not omit a value on $[\Gamma(A)]^2$.

If C is a $(\mathcal{R}_1^*, \leq^*)$ -generic filter then $\Gamma''C$ generates an ultrafilter on $[T_1]$ which is selective for \mathcal{R}_1 but not Ramsey for \mathcal{R}_1 .

Proof.

Let $\mathcal U$ be the ultrafilter on $[T_1^\star]$ generated by $\mathcal C$. $\delta(\mathcal U)$ is an ultrafilter on $[T_1]$ generated by $\Gamma''\mathcal C$.

$$\Gamma(A_0) \supseteq \Gamma(A_1) \supseteq \Gamma(A_2) \supseteq \dots$$

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$$

$$\exists A \in \mathcal{C}, \ \forall i < \omega, \ A \setminus r_i(A) \subseteq A_i$$

$$\forall i < \omega, \ \Gamma(A) \setminus r_i(\Gamma(A)) \subseteq \Gamma(A_i)$$

Let $F:[T_1]^2\to 3$ be the map such that $F\{s,t\}$ is the length of the longest common initial segment of $\delta^{-1}(s)$ and $\delta^{-1}(t)$. For each $A\in\mathcal{C}$, F does not omit a value on $[\Gamma(A)]^2$. Therefore $\gamma(\mathcal{U})$ is not weakly-Ramsey.

Let n be a positive integer. Suppose that T_1, T_2, \ldots, T_n have been defined.

Let n be a positive integer. Suppose that T_1, T_2, \ldots, T_n have been defined. For each $i < \omega$, let

$$T_{n+1}(i) = \left\{ \langle i \rangle^{\frown} s : s \in T_n(j) \& \frac{i(i+1)}{2} \le j \le \frac{(i+1)(i+2)}{2} \right\}$$

Let n be a positive integer. Suppose that T_1, T_2, \ldots, T_n have been defined. For each $i < \omega$, let

$$T_{n+1}(i) = \left\{ \langle i \rangle^{\frown} s : s \in T_n(j) \& \frac{i(i+1)}{2} \leq j \leq \frac{(i+1)(i+2)}{2} \right\}$$

$$T_{n+1} = \bigcup_{i < \omega} T_{n+1}(i)$$

Let n be a positive integer. Suppose that T_1, T_2, \ldots, T_n have been defined. For each $i < \omega$, let

$$T_{n+1}(i) = \left\{ \langle i \rangle^{\frown} s : s \in T_n(j) \& \frac{i(i+1)}{2} \le j \le \frac{(i+1)(i+2)}{2} \right\}$$

$$T_{n+1} = \bigcup_{i < \omega} T_{n+1}(i)$$

$$T_{n+1}^{\star}(i) = \left\{ \langle i \rangle^{\frown} s : s \in T_n^{\star}(j) \& \frac{i(i+1)}{2} \le j \le \frac{(i+1)(i+2)}{2} \right\}$$

Let n be a positive integer. Suppose that T_1, T_2, \ldots, T_n have been defined. For each $i < \omega$, let

$$T_{n+1}(i) = \left\{ \langle i \rangle^{\frown} s : s \in T_n(j) \& \frac{i(i+1)}{2} \le j \le \frac{(i+1)(i+2)}{2} \right\}$$

$$T_{n+1} = \bigcup_{i < \omega} T_{n+1}(i)$$

$$T_{n+1}^{\star}(i) = \left\{ \langle i \rangle^{\frown} s : s \in T_n^{\star}(j) \& \frac{i(i+1)}{2} \le j \le \frac{(i+1)(i+2)}{2} \right\}$$

$$T_{n+1}^{\star} = \bigcup T_{n+1}^{\star}(i)$$

4 D > 4 D > 4 E > 4 E > E = 900

Let n be a positive integer. If C is a $(\mathcal{R}_n^*, \leq^*)$ -generic filter then $\Gamma''C$ generates an ultrafilter on $[T_n]$ which is selective for \mathcal{R}_n but not Ramsey for \mathcal{R}_n .

Let n be a positive integer. If C is a $(\mathcal{R}_n^*, \leq^*)$ -generic filter then $\Gamma''C$ generates an ultrafilter on $[T_n]$ which is selective for \mathcal{R}_n but not Ramsey for \mathcal{R}_n .

References I

Ultrafilters on a countable set.

Annals of Mathematical Logic, 2:1–24, 1970.

Natasha Dobrinen and Stevo Todorcevic.

Ramsey-classification theorems and their application in the Tukey theory of ultrafilters, part 1.

Transactions of the American Mathematical Society, to appear.

A new proof that analytic sets are Ramsey.

Journal of Symbolic Logic, 39:163-165, 1974.

Claude Leflamme.

Forcing with filters and complete combinatorics.

Annals of Pure and Applied Logic, 42:125-163, 1967.

References II

A notion of selective ultrafilter corresponding to topological Ramsey spaces.

Math. Log. Quart., 53(3):255-267, 2007.

Stevo Todorcevic.

Introduction to Ramsey Spaces.

Princeton University Press, 2010.

Timothy Trujillo.

Selective but not ramsey.

Preprint, 2013.

