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Theorem (König Infinity Lemma)

Every infinite finitely branching tree has an infinite path.



Definitions

I A tree is set T together with an ordering <T which is
wellfounded, transitive, irreflexive and such that for all t ∈ T
the set {x ∈ T | x <T t} is linearly ordered by <T .

I The height of an element t is the order-type of the collection
of the predecessors of t under <T . That is, the unique ordinal
α such that (α,∈) ' ({x ∈ T | x <T t}, <T ).

I The αth level of the tree is the collection of nodes of height α.

I The height of a tree T is the least ordinal β such that there
are no nodes of height β.

I A set b is a cofinal branch through T if b ⊆ T and (b, <T ) is
a linear order whose order-type is the height of the tree.
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The tree property

Theorem (König Infinity Lemma)

Every tree of height ω with finite levels has a cofinal branch

Let κ be a regular cardinal.

Definition
A κ-tree is a tree of height κ with levels of size less than κ.

Definition
A cardinal κ has the tree property if every κ-tree has a cofinal
branch. A counterexample to the tree property at κ is called a
κ-Aronszajn tree.
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When do Aronszajn trees exist?

Theorem (Aronszajn)

There is a tree of height ω1 all of whose levels are countable,
which has no cofinal branch.

Theorem (Specker)

If κ<κ = κ, then there is a κ+-Aronszajn tree. In particular CH
implies that there is an ω2-Aronszajn tree.

Remark
The tree constructed is special in the sense that there is a function
from T to κ such that f (s) 6= f (t) whenever s <T t.
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The tree property and large cardinals

Definition
A uncountable cardinal κ is inaccessible if it is a regular limit
cardinal and for all µ < κ, 2µ < κ.

Definition
A cardinal κ is weakly compact if κ is uncountable and for all
f : [κ]2 → 2, there is H ⊆ κ of size κ such that f is constant on
[H]2.

Theorem (Tarski and Keisler)

κ is weakly compact if and only if it is inaccessible and has the tree
property.
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What about the tree property at non-inaccessible cardinals?

Theorem (Mitchell)

The theory ZFC + ‘there is a weakly compact cardinal’ is
consistent if and only if the theory ZFC + ‘ω2 has the tree
property’ is consistent.

I The reverse direction of the theorem uses Gödel’s
constructible universe L.

I The forward direction is an application of Cohen’s method of
forcing.

I We focus on generalizations of the forcing direction of
Mitchell’s theorem, since further questions about the tree
property seem to require very large cardinals.
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Measurable Cardinals

Definition
A cardinal κ is measurable if there is a transitive class N and an
elementary embedding j : V → N with critical point κ.

Fact
κ is measurable implies κ has the tree property.

Proof.

I Let T be a κ-tree and assume that the underlying set of T is
κ.

I Let j witness that κ is measurable.

I j(T ) is a tree of height j(κ) and j(T ) � κ = T .

I In N choose a point on level κ of j(T ).

I This point determines a branch through T .
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Mitchell’s forcing
Let κ be a measurable cardinal.
Ideas of the construction:

I Avoid CH.

I End up with 2ω = κ = ω2.

I Somehow prove that the tree property holds.

Vague definition of the forcing: We call the forcing M.
Conditions are pairs (p, q) such that

I p is in P = Add(ω, κ)

I q is a partial function whose domain is a subset of κ

I for each α in the domain of q, q(α) is a P � α-name for an
element of a forcing which collapses 2ω = α.

We let (p1, q1) ≤ (p2, q2) if

I p1 ≤ p2,

I dom(q1) ⊇ dom(q2) and

I if α ∈ dom(q2), then p1 � α  q1(α) ≤ q2(α).
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The tree property at ω2

We just sketch the proof.

1. Let T be an ω2-tree in V [M].

2. Let j : V → N witness that κ is measurable.

3. By using a similar argument to the one given above, T has a
cofinal branch in the model N[j(M)].

4. The tree T is a member of N[M], but the forcing j(M)/M
which takes us from N[M] up to N[j(M)] could not have
added the cofinal branch.

5. So the tree property holds at ω2 in V [M].
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Questions

Question
Is it consistent that all regular cardinals greater than ℵ1 have the
tree property?

This question is too hard. So a better question is:

Question
What is the largest initial segment of regular cardinals which can
have the tree property?
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Successive cardinals with the tree property

Theorem (Abraham)

If there is a supercompact cardinal with a weakly compact cardinal
above it, then it is consistent that ℵ2 and ℵ3 have the tree
property simultaneously.

Theorem (Cummings and Foreman)

If there are infinitely many supercompact cardinals, then it is
consistent that simultaneously for all n ≥ 2, ℵn has the tree
property.

Theorem (Neeman)

Assuming that there are ω supercompact cardinals it is consistent
that all regular cardinals in the interval [ℵ2,ℵω+1] have the tree
property.
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Successors of a singular cardinal

Theorem (Gitik and Sharon)
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Successors of singulars continued

Theorem (U)

Assuming that there is a supercompact cardinal with a weakly
compact cardinal above it, it is consistent that there is a singular
strong limit cardinal κ of cofinality ω such that

1. 2κ = κ++,

2. there are no special κ+-trees and

3. κ++ has the tree property.



A few words on the proof

Let κ be supercompact and λ > κ be weakly compact.

I The key idea is to replace the use of Add(ω, κ) in Mitchell’s
forcing with the two step iteration of Add(κ, λ) ∗ D where D
is diagonal Prikry forcing.

I The rest of the proof can be seen as working to recover
analogous properties to Mitchell’s original forcing.

I Fortunately, much of this work is done by the paper of
Cummings and Foreman.

I Unfortunately, there is also a mistake in that paper at a
critical point in the argument.
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