Notes on orthoalgebras in categories

John Harding and Taewon Yang

Department of Mathematical Sciences New Mexico State University

BLAST 2013, Chapman University Aug. 8, 2013

Overview

We show a certain <u>interval</u> in the (canonical) orthoalgebra $\mathfrak{D}A$ of an object A in a category \mathscr{K} arises from decompositions.

- What kind of category are we considering here?
- How can we obtain the <u>orthoalgebra of decompositions</u> of an object in such a category?

Categories ${\mathscr K}$

Consider a category ${\mathscr K}$ with finite products such that

- I. projections are epimorphisms and
- II.for any ternary product $(q_i: X_1 \times X_2 \times X_3 \longrightarrow X_i)_{i \in \{1,2,3\}}$, the following diagram is a pushout in \mathcal{K} :

where p_{X_3} and r_{X_3} are the second projections.

Decompositions

- An isomorphism $A \longrightarrow X_1 \times \cdots \times X_n$ in \mathcal{K} is called an n-ary decomposition of A.
- For decompositions $f:A\longrightarrow X_1\times X_2$ and $g:A\longrightarrow Y_1\times Y_2$ of A, we say \underline{f} is equivalent to \underline{g} if there are isomorphisms $\gamma_i:X_i\longrightarrow Y_i$ (i=1,2) such that the following diagram is commutative in $\mathscr K$

Notation. Given $A \in \mathcal{K}$,

 $[(f_1, f_2)]$: equivalence class of $f: A \longrightarrow X_1 \times X_2$.

 $\mathfrak{D}(A)$: all equivalence classes of all decompositions of A in \mathscr{K} .

Partial operation on decompositions

For $[(f_1, f_2)]$ and $[(g_1, g_2)]$ in $\mathfrak{D}(A)$,

• $[(f_1, f_2)] \oplus [(g_1, g_2)]$ is <u>defined</u> if there is a ternary decomposition

$$(c_1, c_2, c_3): A \longrightarrow C_1 \times C_2 \times C_3$$

of A such that

$$[(f_1, f_2)] = [(c_1, (c_2, c_3))]$$
 and $[(g_1, g_2)] = [(c_2, (c_1, c_3))].$

In this case, define the sum by

$$[(f_1, f_2)] \oplus [(g_1, g_2)] = [(c_1, c_2), c_3)]$$

• Also, the equivalence classes $[(\tau_A, id_A)]$ and $[(id_A, \tau_A)]$ are distinguished elements $\mathbf{0}$ and $\mathbf{1}$ in $\mathfrak{D}(A)$, respectively, where $\tau_A : A \longrightarrow T$ is the unique map into the terminal object T.

Orthoalgebras in ${\mathscr K}$

The following is due to Harding.

• Proposition 1. The structure $(\mathfrak{D}(A), \oplus, \mathbf{0}, \mathbf{1})$ is an orthoalgebra.

An orthoalgebra is a partial algebra $(A, \oplus, \mathbf{0}, \mathbf{1})$ such that for all $a, b, c \in A$,

- 1. $a \oplus b = b \oplus a$
- 2. $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
- 3. For every a in A, there is a unique b such that $a \oplus b = 1$
- 4. If $a \oplus a$ is defined, then a = 0

Note.

$$BAlg \subseteq OML \subseteq OMP \subseteq OA$$

Intervals in $\mathfrak{D}(A)$

For any decomposition

$$(h_1, h_2): A \longrightarrow H_1 \times H_2$$

of A in \mathcal{K} , define the <u>interval</u> of (h_1, h_2) by

$$\mathfrak{L}_{[(h_1,h_2)]} = \{ [(f_1,f_2)] \in \mathfrak{D}(A) \mid [(f_1,f_2)] \leqslant [(h_1,h_2)] \},$$

where \leq is the induced order from the orthoalgebra $\mathfrak{D}(A)$, that is,

• $[(f_1, f_2)] \leq [(h_1, h_2)]$ means

$$[(f_1, f_2)] \oplus [(g_1, g_2)] = [(h_1, h_2)]$$

for some decomposition (g_1, g_2) of A in \mathcal{K} .

Intervals as decompositions

Proposition 2.(HY) For each decomposition

$$(h_1, h_2): A \longrightarrow H_1 \times H_2$$

of an object A in \mathcal{K} , the interval $\mathfrak{L}_{\lceil (h_1,h_2) \rceil}$ is isomorphic to $\mathfrak{D}(H_1)$.

Example 1

• The category **Grp** of all groups and their maps satisfies all the necessary hypothesis. Consider a cyclic group $G = \langle a \rangle$ of order 30. Notice $|G| = 2 \cdot 3 \cdot 5$.

• $\mathfrak{D}(G)$ in the category **Grp**.

• The interval $\mathfrak{L}_{(\langle a^2\rangle,\langle a^{15}\rangle)}$ is a four element Boolean lattice. Also, we have the following:

$$\mathfrak{D}(\langle a^2 \rangle) \cong \{(\langle a^6 \rangle, \langle a^{10} \rangle), (\langle a^{10} \rangle, \langle a^6 \rangle), (\langle a^2 \rangle, \langle e \rangle), (\langle e \rangle, \langle a^2 \rangle)\}$$

Thus we obtain

$$\mathfrak{L}_{(\langle a^2\rangle,\langle a^{15}\rangle)}\cong\mathfrak{D}(\langle a^2\rangle)$$

Example 2

• Consider the cyclic group $G = \langle a \rangle$ with $|G| = 12 = 4 \cdot 3$.

$$\mathsf{Factor\ pairs}:\ \{(\langle a^4\rangle,\langle a^3\rangle),(\langle a^3\rangle,\langle a^4\rangle)(\langle e\rangle,\langle a\rangle),(\langle a\rangle,\langle e\rangle)\}$$

(four-element Boolean lattice. Note that the poset is not isomorphic to Sub(G))

$$\mathfrak{L}_{(\langle a^3\rangle,\langle a^4\rangle)}\cong \mathbf{2}$$
 and $\mathfrak{D}(\langle a^3\rangle)\cong \mathbf{2}$

Proof (Sketch)

The essential part of the proof is to construct maps F and G

$$\mathfrak{L}_{[(h_1,h_2)]} \xrightarrow{\mathbf{F}} \mathfrak{D}(H_1)$$

First define

$$\textbf{G}:\mathfrak{D}(\textit{H}_1)\longrightarrow\mathfrak{L}_{[(\textit{h}_1,\textit{h}_2)]}$$

by

$$\left[\left(m_{1},m_{2}\right)\right]\leadsto\left[\left(m_{1}h_{1},\left(m_{2}h_{1},h_{2}\right)\right)\right]$$

Conversely, seeking a map $\mathbf{F}: \mathfrak{L}_{[(h_1,h_2)]} \longrightarrow \mathfrak{D}(H_1)$, consider a binary decomposition $(f_1,f_2): A \longrightarrow F_1 \times F_2$ in $\mathfrak{L}_{[(h_1,h_2)]}$. Then there is an isomorphism $(c_1,c_2,c_3): A \longrightarrow C_1 \times C_2 \times C_3$ in \mathscr{K} such that

$$[(f_1, f_2)] = [(c_1, (c_2, c_3))]$$
 and $[(h_1, h_2)] = [((c_1, c_2), c_3)]$

The latter implies that there is an isomorphism

$$(r_1, r_2): H_1 \longrightarrow C_1 \times C_2$$

with $(r_1, r_2)h_1 = (c_1, c_2)$. Then define the map **F** by

$$[(f_1, f_2)] \leadsto [(r_1, r_2)]$$

It is known-that the correspondences ${\bf F}$ and ${\bf G}$ are indeed well-defined. Moreover, they are orthoalgebra homomorphisms that are inverses to each other.

Speculations

- Do we have more instances for the conditions I and II?
- Can we give some categorical conditions on morphisms so that $\mathfrak{D}(A)$ is an orthomodular poset? Moreover, can we also give some order/category-theoretic conditions on Sub(A) in $\mathscr K$ such that

$$Sub(A) \longrightarrow \mathfrak{D}(A)$$

is an orthomodular embedding (For example, $Hilb_K$ -like category)?

References

- M. Dalla Chiara, R. Giuntini, and R. Greechie, Reasoning in quantum theory, Sharp and unsharp quantum logics, Trends in Logic-Studia Logica Library, 22. Kluwer Academic Publishers, Dordrecht, 2004.
- F. W. Lawvere and R. Rosebrugh, Sets for mathematics, Cambridge University Press, Cambridge, 2003.
- J. Flachsmeyer, Note on orthocomplemented posets, Proceedings of the Conference, Topology and Measure III. Greifswald, Part 1, 65-73, 1982.
- J. Harding, Decompositions in quantum logic, Trans. Amer. Math. Soc. 348 (1996), no. 5, 1839-1862.
- T. Yang, Orthoalgebras, Manuscript, 2009.

Thank you