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Overview

We show a certain interval in the (canonical) orthoalgebra DA of
an object A in a category J# arises from decompositions.



e What kind of category are we considering here?

e How can we obtain the orthoalgebra of decompositions of an
object in such a category?




Categories %~

Consider a category % with finite products such that
e |. projections are epimorphisms and

e Ilfor any ternary product (qg; : X1 x Xo x X3 —> Xi)je(1,2,3},
the following diagram is a pushout in JZ":

X1 X X2 X X3 (42,43) X2 X X3
(91,43) 3
Xl X X3 X, X3

where px, and rx, are the second projections.



Decompositions

e An isomorphism A — X; x --- x X, in J is called an
n-ary decomposition of A.

e For decompositions f : A— Xy x Xpoand g : A— Y1 X Y,
of A, we say f is equivalent to g if there are isomorphisms
vi : Xi — Y; (i = 1,2) such that the following diagram is
commutative in J&

f

A X1 x Xo
ida Y1 X2
A Yl X Y2




Notation. Given A € ¢,

[(fi, f2)] : equivalence class of f : A — X; x Xa.

D(A) : all equivalence classes of all decompositions of A in ¢ .




Partial operation @ on decompositions
For [(f1,2)] and [(g1,82)] in D(A),

e [(f,f)]®[(g1,82)] is defined if there is a ternary
decomposition

(C1,C2,C3) A — Cl X Cz X C3
of A such that

[(f1, 2)] = [(c1, (2, c3))] and [(g1,82)] = [(c2; (€1, 3))]-

In this case, define the sum by

[(flv f2)] @ [(g17g2)] = [(Cl’ C2)7 C3)]

e Also, the equivalence classes [(7a, ida)] and [(ida, Ta)] are
distinguished elements 0 and 1 in ©(A), respectively, where
T7a : A— T is the unique map into the terminal object T.



Orthoalgebras in J#

The following is due to Harding.

e Proposition 1. The structure (D(A),®,0,1) is an

orthoalgebra.

An orthoalgebra is a partial algebra (A, ®,0,1) such that for all

a,b,ce A,

1. a®db=bPa

2. a®(bdc)=(a®b)dc

3. For every a in A, there is a unique b such that a® b =1
4. If a@® ais defined, then a =0

Note.

BAlg < OML < OMP < OA



Intervals in ©(A)
For any decomposition
(hl,hz) A — H1 X H2

of Ain JZ, define the interval of (hy, h2) by

Lith,h)) = (A, R)] € D(A) | [(f, R)] < [(h1, h2)]},

where < is the induced order from the orthoalgebra ©(A), that is,

e [(f,f)] < [(h1, h2)] means

[(1, 2)] @ [(81,&2)] = [(h1, h2)]

for some decomposition (g1, g2) of Ain .



Intervals as decompositions

Proposition 2.(HY) For each decomposition
(hl,hz> A — H1 X H2

of an object A in ¢, the interval £, 4,)] is isomorphic to D(Hi).



Example 1
e The category Grp of all groups and their maps satisfies all the

necessary hypothesis. Consider a cyclic group G = (a) of
order 30. Notice |G| =2-3-5.
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e ©(G) in the category Grp.
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e The interval £2, 15y is a four element Boolean lattice.
Also, we have the following:

D((a%)) = {((a°), (")), ((a'°), (&), ((a*). (&), (&), (a*))}

Thus we obtain

£(<32>’<315>) ~9 (<32>)



Example 2
e Consider the cyclic group G = (a) with |G| =12 =4"3.
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Factor pairs : {((a*),{a%)), ((2°),{a"))((e),<a)), ({a), {(&))}

(four-element Boolean lattice. Note that the poset is not
isomorphic to Sub(G))

£(<a3>,<a4>) ~ 2 and ’D(<a3>) ~ 2



Proof (Sketch)

The essential part of the proof is to construct maps F and G

F

Ll(hy,ho)] D(H1)




First define
G : @(Hl) B 2[(;717/72)]

by

[(m1, m2)] o [(myhe, (m2hy, h2))]



Conversely, seeking a map F : £, 4,)] — D(H1), consider a
binary decomposition (f1, ) : A— F1 x F2 in L[y p,)]-

Then there is an isomorphism (c1, ¢, ¢c3) : A—> C1 x Gy x C3 in
K such that

[(f, 22)] = [(c1, (2, 3))] and [(h1, h2)] = [((c1, @2), c3)]
The latter implies that there is an isomorphism
(n,n):H — G x G
with (r1, n)h1 = (c1, c2). Then define the map F by

[(f1, )] > [(r1, 12)]



It is known-that the correspondences F and G are indeed
well-defined. Moreover, they are orthoalgebra homomorphisms that
are inverses to each other.



Speculations

e Do we have more instances for the conditions | and 1?7

e Can we give some categorical conditions on morphisms so
that ©(A) is an orthomodular poset? Moreover, can we also
give some order/category-theoretic conditions on Sub(A) in
J such that

Sub(A) — D(A)

is an orthomodular embedding (For example, Hilbk-like
category)?
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