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Sheaves and étale spaces

Definition of étale space

Let V be a variety of abstract algebras, (Y , ρ) a topological

space.

Let (Ay )y∈Y be a Y -indexed family of V-algebras.

Let E :=
⊔

y∈Y Ay , with p : E � Y the natural surjection.

Suppose τ is a topology on E such that p : (E , τ) � (Y , ρ) is

a local homeomorphism: any point has an open

neighbourhood on which p has a right inverse.

p : (E , τ) � (Y , ρ) is called an étale space of V-algebras.
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Sheaves and étale spaces

Sheaf from an étale space

Let p : (E , τ) � (Y , ρ) be an étale space of V-algebras.

For any U ∈ ρ, write F (U) for the set of local sections over U:

F (U) := {s : U → E continuous s.t. p ◦ s = idU}.

Note: F (U) is a V-algebra (being a subalgebra of
∏

y∈U Ay ).

If U ⊆ V , there is a natural restriction map F (V )→ F (U).

F is called the sheaf associated with p.
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Sheaves and étale spaces

Definition of sheaf

In general, a sheaf F on Y consists of the data:

For each open U, a V-algebra F (U) (“local sections”);

For each open U ⊆ V , a V-homomorphism

()|U : F (V )→ F (U) (“restriction maps”);

such that the appropriate diagrams commute, satisfying the
following patching property:

For any open cover (Ui )i∈I of an open set U, (si )i∈I a

“compatible family” of local sections, i.e., si |Ui∩Uj = sj |Ui∩Uj

for all i , j ∈ I .

there exists a unique s ∈ F (U) such that s|Ui = si for all i ∈ I .

F (Y ) is called the algebra of global sections of the sheaf F .
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Sheaves and étale spaces

Sheaves vs. étale spaces

Fact
Any sheaf arises from an étale space, and vice versa.
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Boolean products

Boolean product representation

Let A be an abstract algebra.

A Boolean product representation of A is a sheaf F on a

Boolean space Y such that A is isomorphic to the algebra of

global sections of F .

Equivalent: a subdirect embedding A �
∏

y∈Y Ay satisfying:

(Open equalizers) For any a, b ∈ A, the equalizer

‖a = b‖ := {y ∈ Y | ay = by} is open;
(Patch) For K clopen in Y , a, b ∈ A, there exists c ∈ A such

that a|K = c |K and b|Kc = c |Kc .
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Boolean products

Boolean product, pictorially
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Boolean products

Lattices of congruences

Theorem (Comer 1971, Burris & Werner 1980)

Boolean product representations of A are in a natural one-to-one

correspondence with relatively complemented distributive lattices of

permuting congruences on A.
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Boolean products

Boolean sum decompositions

Let D be a distributive lattice.

Theorem (Gehrke 1991)

Boolean product representations D �
∏

y∈Y Dy are in a natural

one-to-one correspondence with Boolean sum decompositions of

the Stone dual space X of D into the Stone dual spaces (Xy )y∈Y

of the lattices (Dy )y∈Y .

Also see [Hansoul & Vrancken-Mawet 1984] for a version for

the Priestley dual spaces.
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Boolean products

Dual characterization, pictorially
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Boolean products

Question

What if Y is no longer a Boolean space?
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Stably compact spaces

Motivation

Many interesting sheaf representations use a base space which

is spectral or compact Hausdorff.

Stably compact spaces form a common generalization of these

two classes.
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Stably compact spaces

Stably compact spaces

“Generalisation of compact Hausdorff to T0-setting”

Definition
Stably compact space =

T0,

Sober,

Locally compact,

Intersection of compact saturated is compact.
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Stably compact spaces

De Groot dual and patch topology

For any topological space (Y , ρ), define its de Groot dual

ρ∂ := 〈U ⊆ Y | Y \ U is compact saturated in ρ〉top

Fact: If (Y , ρ) is stably compact, then so is Y ∂ := (Y , ρ∂).

Define ρp := ρ ∨ ρ∂ , the patch topology.

Fact: (Y , ρp) is a compact Hausdorff space.

Let y ≤ y ′ ⇐⇒ y ′ ∈ {y}, the specialization order of ρ.

Fact: ≤ is a closed subspace of (Y × Y , ρp × ρp).

So (Y , ρp,≤) is a compact ordered space (Nachbin 1965).
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Stably compact spaces

Compact ordered spaces

Conversely, given a compact ordered space (Y , π,≤), let π↓

the topology of open down-sets.

Then (Y , π↓) is a stably compact space, and (π↓)∂ = π↑.

Fact
The categories of stably compact spaces and compact ordered

spaces are isomorphic.
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Proximity lattices

Representing stably compact spaces

Example (Open basis presentation)

X stably compact space

D lattice-basis of open sets for X

Define U R V iff there exists compact saturated K ⊆ X such

that U ⊆ K ⊆ V

Fact: X can be recovered as the space of “round prime ideals”

of R .
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Proximity lattices

Spectral spaces with retractions

Fact (Johnstone, 1982)

A topological space X is stably compact iff

there exists a spectral

space Y and a continuous retraction of Y onto X .

Y YY

X X

f
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Proximity lattices

Duality for spectral spaces with continuous maps

Fact: DLj ∼=op SpecSpc

Here, SpecSpc : spectral spaces with continuous maps,

and DLj : distributive lattices with j-morphisms:

Definition
A relation H ⊆ D × E between distributive lattices D and E is
called a j-morphism iff:

≥ ◦ H ◦ ≥ = H

a H
∨

B ⇐⇒ ∀b ∈ B aHb∧
A H b ⇐⇒ ∀a ∈ A aHb

If
∨

A H b then ∃B ⊆ω H[A] such that b ≤
∨

B.
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Proximity lattices

Duality for stably compact spaces

Definition
A join-strong proximity lattice is a pair (D,R) where D is a

distributive lattice, R−1 : D → D is a j-morphism, and R ◦ R = R .

Fact
The categories of stably compact spaces and join-strong proximity

lattices are equivalent.

Proof.

Stably compact spaces are retracts of spectral spaces.

Therefore, duals of stably compact spaces are retracts of

distributive lattices in the category DLj .
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Stably compact sum decompositions

The case of MV-algebras

Theorem (Gehrke, Marra, vG 2012)

The Priestley dual space X of the distributive lattice underlying an

MV-algebra A decomposes as a stably compact sum over the base

space Y of prime MV ideals of A.
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Stably compact sum decompositions

Stably compact sum decompositions

Definition
A stably compact sum decomposition of a Priestley space X is a

continuous surjection q : X � Y ∂ , with Y stably compact,

satisfying the following dual patching property:

(P) Let (Ui )
n
i=1 be any finite cover of Y by ρ∂-open sets, and let

(âi )
n
i=1 be any finite collection of clopen downsets of X such

that

âi ∩ q−1(Ui ∩ Uj) = âj ∩ q−1(Ui ∩ Uj)

holds for any i , j ∈ {1, . . . , n}. Then the set⋃n
i=1(âi ∩ q−1(Ui )) is a clopen downset in X .
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Stably compact sum decompositions

Property (P), pictorially

X

q

Y ∂

â2

â1

U1 U2y

Xy

⋃n
i=1(âi ∩ q−1(Ui ))
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â2

â1
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â1

U1 U2y

Xy

⋃n
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Stably compact sum decompositions

Spectral sum yields sheaf

Theorem (Gehrke, Marra, vG 2012)

If X is the Priestley space of a distributive lattice A, then any

stably compact sum decomposition q : X � Y ∂ yields a sheaf

representation of A over Y .

Example
For an MV-algebra A, there are two natural stably compact sum

decompositions of the dual space X , each of which yields a sheaf

representation of A: one over its prime, the other over its maximal

spectrum.
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Fitted sheaves

Fitted sheaves

Question: which sheaves can be captured by such a

decomposition?

Let B a basis for the base space Y .

Call a sheaf F fitted for B if, for each U ∈ B , the restriction

map F (Y )→ F (U) is surjective.

(“Fitted for O(Y )” = “flabby” or “flasque”...)
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Fitted sheaves

Lattices of congruences, revisited

Let F be a sheaf of distributive lattices on a topological space

Y which is fitted for a lattice basis B for Y with A := F (Y ).

For U ∈ B , define θF (U) := ker(F (Y ) � F (U)).

Proposition

The function θF : Bop → ConDL(A) is a lattice homomorphism, and

any two congruences in the image of θF permute.
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Fitted sheaves

Sheaf yields decomposition map

Given a sheaf F fitted for B , lift this lattice homomorphism

θF : Bop → ConDL(A) to θF : O(Y ∂)→ ConDL(A).

Note that ConDL(A) ∼= O(X ), where X is the Priestley dual

space of the distributive lattice A.

By pointless duality, we obtain a continuous map q : X → Y ∂ .
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Fitted sheaves

Lifting to frames

Lemma (Lifting)

Suppose that B is a lattice basis for the open sets of a stably

compact space Y and that h : Bop → F is a lattice homomorphism

from Bop into a frame F . Then the function h : O(Y ∂)→ F

defined by

h(W ) :=
∨
{h(U) | U ∈ B, Uc ⊆W }

is a frame homomorphism.

Proof based on strong proximity lattice of (O,K )-pairs by

Jung & Sünderhauf (1996).
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Fitted sheaves

Proof of lifting lemma

To show: h(W ) :=
∨
{h(U) | U ∈ B, Uc ⊆W } preserves

∨
.

Enough: h(
⋃

i∈I Wi ) ≤
∨

i∈I h(Wi ).

From the fact that B is a basis, deduce that

Wi =
⋃
{V ∈ O(Y ∂) | ∃U ∈ B : V ⊆ Uc ⊆Wi}.

So, if U ∈ B and Uc ⊆
⋃

i∈I Wi , by compactness pick finite

cover F ⊆ {V ∈ O(Y ∂) | ∃i ∈ I ,U ∈ B : V ⊆ Uc ⊆Wi}.

For each V ∈ F , pick UV ∈ B , iV ∈ I , with

V ⊆ (UV )
c ⊆WiV and Uc ⊆

⋃
F .

Then h(U) ≤ h(
⋂

V∈F UV ) ≤
∨

V∈F h(UV ) ≤
∨

i∈I h(Wi ).
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Fitted sheaves

The decomposition map

Let θF : O(Y ∂)→ ConDL(A) be the frame homomorphism

associated to a sheaf F .

The function p : (X , τp)→ (Y , ρ∂) dual to θF is given by:

p(x) = max{y ∈ Y | x ∈ Xy}.

This shows that an analogue of the function k from

MV-algebras1 is available in the context of any fitted sheaf

representation!

1See Mai Gehrke’s talk yesterday afternoon.
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Conclusions

Main theorem

Theorem (Gehrke, vG 2013)

A fitted sheaf representation of a distributive lattice A over a stably

compact space Y yields a stably compact sum decomposition of

the Priestley dual space X of A over Y ∂ .
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Conclusions

This talk in a picture

F (Y ) = D

E

Y

pa

(D/y)∗

q

Y ∂

X = D∗

X

â
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Conclusions

Analogy with Boolean case

Sheaf over Boolean space Sheaf over stably compact space

Rel. comp. distributive lat-

tice of congruences

Strong proximity lattice of congruences

Boolean sum decomposition Stably compact sum decomposition
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Conclusions

Further work

To retrieve the topology of the dual space from the topologies

on the subspaces and on the base space;

To apply these results to more general and to other classes of

lattice-ordered algebras.
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