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Small representations of the relation algebra ~ .  + 1 (1, 2, 3) 

P. JIPSEN, R. D. MADDUX AND Z. TUZA 

Abstract. Applying combinatorial methods, we prove that the symmetric relation algebra gn + 1 ( l, 2, 3) 
of n + 1 atoms is finitely representable for all n -> I, on at most (2 + o(1))n 2 elements as n ~ oe. We 
explicitly construct a representation of size -< 4.5n 2, for every n >- 1. 

The finite relation algebra gn+L(1,  2, 3) is defined as follows. The a toms of  

gn + ~ (1, 2, 3) are 1', al ,  a2 . . . . .  G ,  and gn + 1 ( 1, 2, 3) is symmetric, i.e., )? = x for 
every x. I f  x and y are distinct a toms different f rom 1', then x; y = 0' and x; x = 1. 

Thus, the product  o f  any two elements is as big as possible. 

R. D. Maddux  proved in [4] that  ~n+1(1,  2, 3) is representable, and asked 

whether gn+~(1,  2, 3) is representable over a finite set. In [6] he remarks (p. 182) 

that the answer is "yes".  In this note we give two proofs  o f  this result: a 

constructive and a nonconstruct ive one, the former  based on geometric ideas 

inspired by results o f  R. Lyndon  in [3], and the latter one based on probabilistic 

techniques which originated with Erd6s, and which were also used by Maddux  to 

answer his own question. With regards to our  constructive proof,  we wish to point  

out  that  H. Andr6ka  also has explicit constructions (which produce representations 

o f  gn +~(1, 2, 3) on C n  5 points), essentially different f rom ours (private communica-  

tion, 1989) but they are more  complicated and would make this note unreasonably 

long. For  readers familiar with Lyndon ' s  algebras 5G(q) constructed f rom a 

projective line with q + 1 points, we note that our  p roo f  arises f rom the observat ion 

that  d~ + ~ (1, 2, 3) is a proper  subalgebra o f  2~~ 1 (q) for q + 1 > 2n. As noted by 

Jdnsson [2] (p. 277), every proper  subalgebra o f  ~ l ( q )  is (finitely) representable. 

Finite representations o f  g ,  + ~ (1, 2, 3) are useful because they can be taken as 

part  o f  other constructions. Examples o f  those applications are given in [ 1], where 

finite representations o f  6~ +1(1, 2, 3) are used in the construct ion o f  a proper  

relation algebra which cannot  be represented in such a way that  each of  its 

au tomorphisms comes f rom a permutat ion of  the base set. 
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Representa t ions  o f  the relat ion algebra gn+~(1,  2, 3) arise f rom certain edge- 

colorings f o f  complete  undirected graphs  with n colors, in which, for any two 

distinct vertices u and v and any two colors i and j (which m a y  be the same), there 

is a third vertex w such that  f (u ,  w) = i and f (v ,  w) = j .  (See [5] and [7].) 

T H E O R E M  1. (i) For every n > 0, g ,  + l(1, 2, 3) is finitely representable. 

(ii) The smallest representation of  gn+ 1( 1, 2, 3) has at least nZ + n + l  and at 

most 4.5n ~ vertices. Moreover, the upper bound can be improved to (2 + o( 1))n 2 as 

n ---* o o .  

(iii) For every e > 0  there is an n(e) such that for  all n > n(e) and all 

N > (6 + •)n 2 log n, almost all edge colorings o f  the complete graph on N vertices 

with n (or at most n) colors are representations of  g ,  + 1 (1, 2, 3). 

Proof. Part  (i) follows f rom either o f  (ii) or (iii). 
(ii): We prove  the lower bound  by showing that  every vertex u has degree at 

least n § 1 in each color  i. Trivially, u is adjacent  to some v in color  i. Then  for 

every j ~ {1, . . . ,  n} there is a w with f (u ,  w) = i and f (v ,  w) =j .  For  distinct j, 
those w must  be distinct, providing n fur ther  edges of  color i incident to u. 

Color ing each pair  o f  a 3-element set with color 1, the upper  bound  is trivial 
for  n = 1. Hence,  assume n > 2. Let q be the smallest pr ime power  not  smaller 

than  2n - 1. Consider  a finite affine plane, say the Galois  plane AG(q), of  order  q. 

This plane has q + 1 > 2n parallel classes A1 . . . . .  Aq+ i of  lines. Part i t ion the lines 

into n groups  F~ . . . . .  Fn, each o f  which is the union o f  two or more  parallel 

classes. Recall that  each pair  (u, v) o f  points  in AG(q) is contained in precisely 

one line. Define f (u ,  v) = i if and only if the line passing through u and v belongs 
to Fi. 

We prove  that  f is a representat ion of  g , +  1(1, 2, 3). Since every line o f  AG(q) 

has q > 2n - 1 _> 3 points,  every edge is contained in a m o n o c h r o m a t i c  triangle. 
Let  L be the line containing the vertices u and v, and let i and j be two arb i t ra ry  

colors. Take  any two nonparal lel  lines Li e F i \ {L}  and L j e  F j \{L}  such that  u 

is on Li and v is on L s. (This is always possible because each group  contains  

at  least two parallel classes.) Then  the unique point  w E Lir~Lj satisfies the 
requirements.  

The  upper  bounds  4.5n 2 and (2 + o(1))n 2 on the number  of  vertices follow f rom 

a s t ronger  var iant  o f  Chebycheff ' s  classical theorem on the distr ibution of  primes. 
(Analysis  o f  small cases shows that  an interval [2n - 1, 2.2n) always contains  a 

pr ime power.  For  large n, there exists a pr ime p with p - 2n = o(n).) 

(iii): Fo r  a fixed E > 0 and a desired p ropor t ion  of  r a n d o m  graphs  that  are 
representat ions,  the choice of  n(e) is delayed until the end of  the proof .  Let  n > n(Q 
and let K = (V, E)  be a complete  graph  on N vertices, where N > (6 + r 2 log n. 
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Assign independent  r a n d o m  variables ~(u, v) to the edges (u, v) ~ E, such that  for  

every (u, v) and every i ~ {1 . . . . .  n} the probabi l i ty  Pr(~(u, v) = i) is equal to 1In. 

We are going to prove  that  the probabi l i ty  o f  the event that  the r a n d o m  coloring 

cg = {~(u, v) t (u, v) ~ E} is a representat ion of  gn + 1 ( 1, 2, 3) tends to 1 as N ~ c~. 
Note  that  in this model  each par t icular  coloring with -< n colors occurs with the 

same probabil i ty.  ( I f  colorings were assumed to have precisely n colors,  then the 

probabi l i ty  of  a par t icular  coloring would be larger, but  we would lose the 

advantage  of  having totally independent  r a n d o m  variables on E.) 

Let u, v ~ V be any two distinct vertices of  K. Then for  any two (not  necessarily 

distinct) fixed colors i , j  ~ {1 . . . . .  n} and any w ~ V\{u ,  v} we have Pr(~(u, w) ~ i 

or ~(u, w) # j )  = 1 - n -2. I f  u and v are fixed, then the independence of  the r a n d o m  

variables ~(u, v) implies that  

Pr(r w) r i or ~(v, w) -r  for  all w ~ V\{u ,  v}) 

= (1 - - n  2 ) N - 2 = ( ( 1  --ll--2)n2)(N--2)/n2<e (N--2)/n2. 

Since the edge (u, v) can be chosen in (u) < N2/2 different ways, and there are n 2 

possible choices for  the ordered pair  (i, j )  o f  colors, we obta in  

Pr(3i, j ~ {1 . . . .  , n}, 3u, v ~ V with r w) r i or ~(v, w) r  

for all w ~ V\{u ,  v}) < N2n2/(2e (u 2)/.2) = P(n, N).  

Observe that  for N > ( 6 +  c)n21ogn the funct ion P ( n , - )  is decreasing. Thus  the 

p ropor t ion  of  the colorings which do not  provide a representat ion of  gn + 1 (1, 2, 3) 
is less than P(n, (6 + e)n ~ log n) --- O(n ~ log 2 n), and by choosing n(e) large enough 

this p ropor t ion  can be made  as small as desirable. �9 

It  remains an open p rob lem to determine the smallest constant  c (1 < c -< 2) 

such that  g , +  1(1, 2, 3) has a representat ion on (c + o(1))n 2 elements as n ~ oo. 
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